Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T11:35:18.891Z Has data issue: false hasContentIssue false

Searching for warped disk AGN candidates

Published online by Cambridge University Press:  16 July 2018

E. Fedorova
Affiliation:
Astronomical Observatory of Taras Shevchenko National University of Kyiv, Observatorna str. 3, 04053 Kiev, Ukraine, email: efedorova@ukr.net
B. I. Hnatyk
Affiliation:
Astronomical Observatory of Taras Shevchenko National University of Kyiv, Observatorna str. 3, 04053 Kiev, Ukraine, email: efedorova@ukr.net
V. I. Zhdanov
Affiliation:
Astronomical Observatory of Taras Shevchenko National University of Kyiv, Observatorna str. 3, 04053 Kiev, Ukraine, email: efedorova@ukr.net
A. Vasylenko
Affiliation:
Main Astronomical Observatory of the NASU, Zabolotnogo 27, 03680, Kiev, Ukraine
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mapping the maser emission of subnuclear regions of active galactic nuclei (AGN) enable us to determine some interesting details of the geometry of the accretion disks (AD) under the condition that they have “maser skin”. Additional information about disk warp in the innermost zone near the central black hole (BH) can be disclosed by means of modeling the shape of the relativistically broadened iron emission lines in the energy range 6-7 keV. Here we analyze the influence of the AD geometry (warp) on the shape of the set of relativistically broadened emission lines, as well as consider some examples of AGNs identified by maser mapping techinque as warped and having the complex shape of iron lines near 6.4 keV.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Bardeen, J. H. & Peterson, J. A., 1975, ApJ, 195, L15CrossRefGoogle Scholar
Caproni, A., Abraham, Z., Cuesta, H. J. M. 2005, BJP, 35 (4B), 1167Google Scholar
Chakraborty, D. & Bhattacharya, S., 2017, MNRAS, 469, 3062Google Scholar
Fedorova, E., Vasylenko, A., Hnatyk, B. I., & Zhdanov, V. I., 2015, Astron. Nachr., 364, 25Google Scholar
Gnerucci, A., Marconi, A., Capetti, A., Axon, D. J., & Robinson, A., 2013, A&A, 549, A139Google Scholar
Graham, A. W. 2008, PASA, 25, 167.Google Scholar
Greenhill, L.,2003, ApJ, 48, 171Google Scholar
Greenhill, L. & Gwinn, C. R. 1997, A&SS, 248 (1-2), 261Google Scholar
Ingram, A., van der Klis, M., Middleton, M. et al. 2016, MNRAS, 461 (2), 1967Google Scholar
Kartje, J. F., Koenigl, A., & Elitzur, M., 1999, ApJ, 513, 180Google Scholar
Kuo, C. Y. 2011, ApJ, 727 (1), 20Google Scholar
Reynolds, C. S., Nowak, M. A., Markoff, S. et al. 2009, ApJ, 691, 1159Google Scholar
Tarchi, A., Castangia, P., Columbano, A. et al. 2011, POS Science (NLS1), 031Google Scholar
Uttley, P. & McHardy, I. M. 2005, MNRAS, 363 (2), 586CrossRefGoogle Scholar
Yamauchi, A., Nakai, N., Ishihara, Y., Diamond, P., & Sato, N., 2012, PASJ, 64 (5), 103Google Scholar