Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T00:53:35.452Z Has data issue: false hasContentIssue false

The second solar spectrum and the hidden magnetism

Published online by Cambridge University Press:  01 November 2008

Jan O. Stenflo*
Affiliation:
Institute of Astronomy, ETH Zurich, HIT J 23.6, CH-8093 Zurich email: stenflo@astro.phys.ethz.ch
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Applications of the Hanle effect have revealed the existence of vast amounts of “hidden“ magnetic flux in the solar photosphere, which remains invisible to the Zeeman effect due to cancellations inside each spatial resolution element of the opposite-polarity contributions from this small-scale, tangled field. The Hanle effect is a coherency phenomenon that represents the magnetic modification of the linearly polarized spectrum of the Sun that is formed by coherent scattering processes. This so-called “Second Solar Spectrum” is as richly structured as the ordinary intensity spectrum, but the spectral structures look completely different and have different physical origins. One of the new diagnostic uses of this novel spectrum is to explore the magnetic field in previously inaccessible parameter domains. The earlier view that most of the magnetic flux in the photosphere is in the form of intermittent kG flux tubes with tiny filling factors has thereby been shattered. The whole photospheric volume instead appears to be seething with intermediately strong fields, of order 100G, of significance for the overall energy balance of the solar atmosphere. According to the new paradigm the field behaves like a fractal with a high degree of self-similarity between the different scales. The magnetic structuring is expected to continue down to the 10m scale, 4 orders of magnitude below the current spatial resolution limit.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Berdyugina, S. V. & Fluri, D. M. 2004, A&A 417, 775Google Scholar
Berdyugina, S. V., Stenflo, J. O., & Gandorfer, A. 2002, A&A 388, 1062Google Scholar
Bianda, M., Solanki, S. K., & Stenflo, J. O. 1998, A&A 331, 760Google Scholar
Bianda, M., Stenflo, J. O., & Solanki, S. K. 1999, A&A 350, 1060Google Scholar
Cattaneo, F. 1999, ApJ 525, L39Google Scholar
Gandorfer, A. 2000, The Second Solar Spectrum, Vol. I: 4625 Å to 6995 Å, ISBN no. 3 7281 2764 7 (Zurich: VdF)Google Scholar
Gandorfer, A. 2002, The Second Solar Spectrum, Vol. II: 3910 Å to 4630 Å, ISBN no. 3 7281 2855 4 (Zurich: VdF)Google Scholar
Gandorfer, A. 2005, The Second Solar Spectrum, Vol. III: 3160 Å to 3915 Å, ISBN no. 3 7281 3018 4 (Zurich: VdF)Google Scholar
Gandorfer, A. M., Povel, H. P., Steiner, P., Aebersold, F., Egger, U., Feller, A., Gisler, D., Hagenbuch, S., & Stenflo, J. O. 2004, A&A 422, 703Google Scholar
Hanle, W. 1924, Z. Phys. 30, 93Google Scholar
Ivanov, V. V. 1991, in: Crivellari, L., Hubeny, I., & Hummer, D. G. (eds.), Stellar Atmospheres: Beyond Classical Models (Dordrecht: Kluwer), Proc. NATO, pp.81CrossRefGoogle Scholar
Janssen, K., Vögler, A., Kneer, F. 2003, A&A 409, 1127Google Scholar
Manso Sainz, R. & Trujillo Bueno, J. 2003, Phys. Rev. Letters 91, 111102Google Scholar
Manso Sainz, R. & Trujillo Bueno, J. 2007, in: Heinzel, P., Dorotovic, I., & Rutten, R. J. (eds.), The Physics of Chromospheric Plasmas, ASP Conf. Ser. (San Francisco: ASP), vol. 368, 155Google Scholar
Manso Sainz, R., Landi Degl'Innocenti, E., & Trujillo Bueno, J. 2004, ApJ 614, L89Google Scholar
Moruzzi, G. & Strumia, F. (eds.) 1991, The Hanle Effect and Level-Crossing Spectroscopy (New York: Plenum)Google Scholar
Nordlund, Å. & Stein, R. F. 1990, in: Stenflo, J. O. (ed.), Solar Photosphere: Structure, Convection, and Magnetic Fields, IAU Symp. 138, 191–211Google Scholar
Povel, H. 1995, Optical Engineering 34, 1870Google Scholar
Povel, H. 2001, in: Mathys, G., Solanki, S. K. & Wickramasinghe, D. T. (eds.), Magnetic Fields Across the Hertzsprung-Russel Diagram, ASP Conf. Ser. (San Francisco: ASP), vol. 248, pp. 543552Google Scholar
Rüedi, I., Solanki, S. K., Livingston, W., Stenflo, J. O. 1992, A&A 263, 323Google Scholar
Solanki, S. K. 1993, Space Sci. Rev. 63, 1Google Scholar
Spruit, H. 1976, SP 50, 269Google Scholar
Stenflo, J. O. 1973, SP 32, 41Google Scholar
Stenflo, J. O. 1980, A&A 84, 68Google Scholar
Stenflo, J. O. 1982, SP 80, 209Google Scholar
Stenflo, J. O. 1997, A&A 324, 344Google Scholar
Stenflo, J. O. 2001, in: Mathys, G., Solanki, S. K. & Wickramasinghe, D. T. (eds.), Magnetic Fields Across the Hertzsprung-Russel Diagram, ASP Conf. Ser. (San Francisco: ASP), vol. 248, pp. 639Google Scholar
Stenflo, J. O. 2004, Rev. Mod. Astron. 17, 269Google Scholar
Stenflo, J. O. 2007, Memorie della Societa Astronomica Italiana 78, 181Google Scholar
Stenflo, J. O. 2008, in: Berdyugina, S., Nagendra, K. N., & Ramelli, R. (eds.), Solar Polarization, Proc. 4th SPW, ASP Conf. Ser. (San Francisco: ASP), in pressGoogle Scholar
Stenflo, J. O. & Holzreuter, R. 2002, in: Sawaya-Lacoste, H. (ed.), Magnetic Coupling of the Solar Atmosphere, ESA Publ. SP-505, 101Google Scholar
Stenflo, J. O. & Holzreuter, R. 2003, in: Pevtsov, A. A. & Uitenbroek, H. (eds.), Current Theoretical Models and High Resolution Solar Observations, Proc. 21st International NSO/SP Workshop, ASP Conf. Ser. (San Francisco: ASP), vol. 286, 169Google Scholar
Stenflo, J. O. & Keller, C. U. 1996, Nature 382, 588Google Scholar
Stenflo, J. O. & Keller, C. U. 1997, A&A 321, 927Google Scholar
Stenflo, J. O. & Lindegren, L. 1977, A&A 59, 367Google Scholar
Stenflo, J. O., Harvey, J. W., Brault, J. W., & Solanki, S. K. 1984, A&A 131, 333Google Scholar
Stenflo, J. O., Keller, C. U., & Gandorfer, A. 1998, A&A 329, 319Google Scholar
Trujillo Bueno, J. & Landi Degl' Innocenti, E. 1997, ApJ 482, L183Google Scholar
Trujillo Bueno, J. & Shchukina, N. 2007, ApJ 664, L135Google Scholar
Trujillo Bueno, J., Shchukina, N., & Asensio Ramos, A. 2004, Nature 430, 326Google Scholar