Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T06:41:22.289Z Has data issue: false hasContentIssue false

The solar active region magnetic field and energetics

Published online by Cambridge University Press:  26 August 2011

Qiang Hu
Affiliation:
CSPAR, University of Alabama in Huntsville, Huntsville, AL, United States email: qh0001@uah.edu
Na Deng
Affiliation:
California State University Northridge, Northridge, CA, United States
Debi P. Choudhary
Affiliation:
California State University Northridge, Northridge, CA, United States
B. Dasgupta
Affiliation:
CSPAR, University of Alabama in Huntsville, Huntsville, AL, United States email: qh0001@uah.edu
Jiangtao Su
Affiliation:
National Astronomical Observatories, Beijing, China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Motivated by increasingly more advanced solar observations, we recently develop a method of coronal magnetic field extrapolation, especially for an active region (sunspot region). Based on a more complex variational principle, the principle of minimum (energy) dissipation rate (MDR), we adopt and solve a more complex equation governing the coronal magnetic field that is non-force-free in general. We employ the vector magnetograms from multiple instruments, including Hinode, NSO, and HSOS, and particularly observations at both photospheric and chromospheric levels for one active region. We discuss our results in the context of quantitative characterization of active region magnetic energy and magnetic topology. These quantitative analyses aid in better understanding and developing prediction capability of the solar activity that is largely driven by the solar magnetic field.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Aulanier, G. 2010, this volumeGoogle Scholar
Bhattacharyya, R., Janaki, M. S., Dasgupta, B., & Zank, G. 2007, Solar Phys., 240, 63CrossRefGoogle Scholar
Dasgupta, B., Dasgupta, P., Janaki, M. S., Watanabe T., & Sato, T. 1998, Phys. Rev. Lett. 81, 3144Google Scholar
Deng, N., Choudhary, D. P., & Balasubramaniam, K. S. 2010a, Astrophys. J., 719, 385Google Scholar
Deng, N., Choudhary, D. P., & Balasubramaniam, K. S. 2010b, ASP Proceedings, submittedGoogle Scholar
DeRosa, M. L., et al. 2009, Astrophys. J., 696, 1780CrossRefGoogle Scholar
Freidberg, J. P. 1987, Ideal Magnetohydrodynamics, Published by Plenum PressGoogle Scholar
Hu, Q., Wang, A., Wu, S. T., & Gary, G. A. 2010b, Astrophys. J., submittedGoogle Scholar
Hu, Q., Dasgupta, B., DeRosa, M. L., Büchner, J., & Gary, G. A. 2010a, J. Atmos. Sol. Terres. Phys. 72, 219CrossRefGoogle Scholar
Hu, Q. & Dasgupta, B. 2008, Solar Phys., 247, 87CrossRefGoogle Scholar
Hu, Q., Dasgupta, B., Choudhary, D. P., & Büchner, J. 2008, Astrophys. J., 679, 848CrossRefGoogle Scholar
Hu, Q. & Dasgupta, B. 2006, Geophysical Research Letters 33, L15106Google Scholar
Montgomery, D. & Phillips, L. 1988, Phys. Rev. A 38, 2953Google Scholar
Qiu, J., Gary, D. E., & Fleishman, G. D. 2009, Solar Phys., 255, 107CrossRefGoogle Scholar
Titov, V. S., Hornig, G., & Démoulin, P. 2002, J. Geophys. Res. 107, 1164Google Scholar
Wiegelmann, T. 2010, this volumeGoogle Scholar