Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T09:35:55.061Z Has data issue: false hasContentIssue false

The star formation process in the Magellanic Clouds

Published online by Cambridge University Press:  01 July 2008

J. M. Oliveira*
Affiliation:
Lennard-Jones Laboratories, School of Physical & Geographical Sciences, Keele University, Staffordshire ST5 5BG, UK email: joana@astro.keele.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Magellanic Clouds offer unique opportunities to study star formation both on the global scales of an interacting system of gas-rich galaxies, as well as on the scales of individual star-forming clouds. The interstellar media of the Small and Large Magellanic Clouds and their connecting bridge, span a range in (low) metallicities and gas density. This allows us to study star formation near the critical density and gain an understanding of how tidal dwarfs might form; the low metallicity of the SMC in particular is typical of galaxies during the early phases of their assembly, and studies of star formation in the SMC provide a stepping stone to understand star formation at high redshift where these processes can not be directly observed. In this review, I introduce the different environments encountered in the Magellanic System and compare these with the Schmidt-Kennicutt law and the predicted efficiencies of various chemo-physical processes. I then concentrate on three aspects that are of particular importance: the chemistry of the embedded stages of star formation, the Initial Mass Function, and feedback effects from massive stars and its ability to trigger further star formation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Abel, T., Bryan, G. L., & Norman, M. L. 2002, Sci, 295, 93CrossRefGoogle Scholar
Banerji, M., Viti, S., Williams, D. A., & Rawlings, J. M. C. 2008, ApJ, in press, arXiv0810.3662Google Scholar
Bate, M. R. & Bonnell, I. A. 2005, MNRAS, 356, 1201CrossRefGoogle Scholar
Bekki, K. & Chiba, M. 2007, PASJ, 24, 21Google Scholar
Bergin, E. A., Langer, W. D., & Goldsmith, P. F. 1995, ApJ, 441, 222CrossRefGoogle Scholar
Bica, E. L., Claria, J. J., & Dottori, H. 2002, AJ, 103, 1859CrossRefGoogle Scholar
Bolatto, A. D., Simon, J. D., Stanimirović, S., et al. 2007, ApJ, 655, 212CrossRefGoogle Scholar
Brandl, B., Sams, B. J., Bertoldi, F., et al. 1996, ApJ, 466, 254CrossRefGoogle Scholar
Brooks, K. & Whiteoak, J. B. 1997, MNRAS, 291, 395CrossRefGoogle Scholar
Carlson, L. R., Sabbi, E., Sirianni, M., et al. 2007, ApJ, 665, 109CrossRefGoogle Scholar
Cassinelli, J. P., Mathis, J. S., & Savage, B. D. 1981, Sci, 212, 1497CrossRefGoogle Scholar
Chabrier, G. 2005, in Corbelli, E., Palla, F., & Zinnecker, H. (eds.), The Initial Mass Function 50 years later, ApSS Library 327 (Dordrecht: Springer), p. 41CrossRefGoogle Scholar
Chu, Y.-H., Gruendl, R. A., Chen, C.-H. R., et al. 2005, ApJ, 634, 189CrossRefGoogle Scholar
Crutcher, R. M., Hakobian, N., & Troland, T. H. 2008, in press, arXiv0807.2862Google Scholar
de Boer, K. S., Braun, J. M., Vallenari, A., & Mebold, U. 1998, A&A, 329, L49Google Scholar
Elmegreen, B. G. 2009, in The Galaxy Disk in Cosmological Context, IAU Symposium 254, arXiv0810.5406Google Scholar
Elmegreen, B. G. 2008, in The Evolving ISM in the Milky Way and Nearby Galaxies: Recycling in the Nearby Universe, 4th Spitzer Science Center Conference, arXiv:0803.3154Google Scholar
Elmegreen, B. G., Klessen, R. S., & Wilson, C. D. 2008, ApJ, 681, 365CrossRefGoogle Scholar
Gordon, K. D., Clayton, G. C., Misselt, K. A., Landolt, A. U., & Wolff, M. J. 2003, ApJ, 594, 279CrossRefGoogle Scholar
Gouliermis, D. A., Brandner, W., & Henning, T. 2006, ApJ, 636, 33CrossRefGoogle Scholar
Gouliermis, D. A., Henning, T., Brandner, W., Dolphin, A. E., Rosa, M., & Brandl, B. 2007, ApJ, 665, 27CrossRefGoogle Scholar
Gouliermis, D. A., Quanz, S. P., & Henning, T. 2007, ApJ, 665, 306CrossRefGoogle Scholar
Harris, J. 2007, ApJ, 658, 345CrossRefGoogle Scholar
Hennekemper, E., Gouliermis, D. A., Henning, T., Brandner, W., & Dolphin, A. E. 2008, ApJ, 672, 914CrossRefGoogle Scholar
Kennicutt, R. C. Jr., 1998, ApJ, 498, 541CrossRefGoogle Scholar
Kroupa, P. 2001, MNRAS, 322, 231CrossRefGoogle Scholar
Kroupa, P. 2008, in Israelian, G. & Meynet, G. (eds.), The Metal Rich Universe (Cambridge, UK: Cambridge University Press), p. 227CrossRefGoogle Scholar
Krumholz, M. R., McKee, C. F., & Tumlinson, J. 2008, ApJ in press, arXiv:0811.0004Google Scholar
Kumar, B., Sagar, R., & Melnick, J. 2008, MNRAS, 386, 1380CrossRefGoogle Scholar
Lazendic, J. S., Whiteoak, J. B., Flamer, I., Harbinson, P. D., & Kuiper, T. B. H. 2002, MNRAS, 331, 969CrossRefGoogle Scholar
Leroy, A., Bolatto, A. D., Stanimirović, S., Mizuno, N., Israel, F., & Bot, C. 2007, ApJ, 658, 1027CrossRefGoogle Scholar
Luhman, K. L., Joergens, V., Lada, C., Muzerolle, J., Pascucci, I., & White, R., 2007, in Reipurth, B., Jewitt, D., and Keil, K. (eds.), Protostars and Planets V, (Tucson: University of Arizona Press), p. 443Google Scholar
Massey, P. & Hunter, D. A. 1998, ApJ, 493, 180CrossRefGoogle Scholar
Massey, P., Puls, J., Pauldrach, A. W. A., Bresolin, F., Kudritzki, R. P., & Simon, T. 2005, ApJ, 627, 477CrossRefGoogle Scholar
Meixner, M.Gordon, K. D., Indebetouw, R. et al. 2006, AJ, 132, 2268CrossRefGoogle Scholar
Mokiem, M. R., de Koter, A., Vink, J. S., et al. 2007, A&A, 473, 603Google Scholar
Nidever, D. L., Majewski, S. R., & Burton, W. B. 2008, ApJ, 679, 432CrossRefGoogle Scholar
Nigra, L., Gallagher, J. S. III, Smith, L. J., Stanimirović, S., Nota, A., & Sabbi, E. 2008, PASP, 120, 972CrossRefGoogle Scholar
Nota, A., Sirianni, M., Sabbi, E., et al. 2006, ApJ, 640, 29CrossRefGoogle Scholar
Oey, M. S. & Clarke, C. J. 2007, in Livio, M. & Villaver, E. (eds.), Massive Stars: From Pop III and GRBs to the Milky Way, (Cambridge, UK: Cambridge University Press), astro-ph/0703036Google Scholar
Oliveira, J. M., van Loon, J.Th., Stanimirović, S., & Zijlstra, A.A. 2006, MNRAS, 372, 1509CrossRefGoogle Scholar
Oliveira, J. M., Jeffries, R. D., & van Loon, J. Th. 2008, 2009, MNRAS, 392, 1034CrossRefGoogle Scholar
Oliveira, J. M. 2008, in Reipurth, B. (ed.), The Handbook of Star Forming regions, in press, arXiv:0809.3735Google Scholar
Panagia, N., Romaniello, M., Scuderi, S., & Kirshner, R. P. 2000, ApJ, 539, 197CrossRefGoogle Scholar
Pontoppidan, K. M., Boogert, A. C. A., Fraser, H. J., et al. 2008, ApJ, 678, 1005CrossRefGoogle Scholar
Sabbi, E., Sirianni, M., Nota, A., et al. 2008, AJ, 135, 173CrossRefGoogle Scholar
Sabbi, E., Sirianni, M., Nota, A., et al. 2007, AJ, 133, 44CrossRefGoogle Scholar
Salpeter, E. E. 1955, ApJ, 121, 161CrossRefGoogle Scholar
Schmalzl, M., Gouliermis, D. A., Dolphin, A. E., & Henning, T. 2008, ApJ, 68, 290CrossRefGoogle Scholar
Schmidt, M. 1959, ApJ, 129, 243CrossRefGoogle Scholar
Selman, F. J. & Melnick, J. 2005, A&A, 443, 851Google Scholar
Shimonishi, T., Onaka, T., & Kato, D., et al. 2008, ApJ, 686, L99CrossRefGoogle Scholar
Simon, J. D., Bolatto, A D., & Whitney, B. A., et al. , 2007, ApJ, 669, 327CrossRefGoogle Scholar
Sirianni, M., Nota, A., Leitherer, C., De Marchi, G., & Clampin, M. 2000, ApJ, 533, 203CrossRefGoogle Scholar
Smith, B. D. & Sigurdsson, S. 2007, ApJ, 661, L5CrossRefGoogle Scholar
van Dishoeck, E. 2004, ARAA, 42, 119CrossRefGoogle Scholar
van Loon, J. Th., Oliveira, J. M., Wood, P. R., et al. 2005, MNRAS, 364, L71CrossRefGoogle Scholar
van Loon, J. Th., Cohen, M., Oliveira, J. M., et al. 2008, A&A, 487, 1055Google Scholar
Weigelt, G. & Baier, G. 1985, A&A, 150, 18Google Scholar
Welty, D. E., Federman, S. R., Gredel, R., Thorburn, J. A., & Lambert, D. L. 2006, ApJS, 165, 138CrossRefGoogle Scholar
Whitney, B. A., Sewilo, M., Indebetouw, R., et al. 2008, AJ, 136, 18CrossRefGoogle Scholar
Wong, T., Whiteoak, J. B., Ott, J., Chin, Y.-N., & Cunningham, M. R. 2006, ApJ, 649, 224CrossRefGoogle Scholar
Zijlstra, A. A., Matsuura, M., Wood, P. R., et al. 2006, MNRAS, 370, 1961CrossRefGoogle Scholar