Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T00:32:28.249Z Has data issue: false hasContentIssue false

Stars in the age of micro-arc-second astrometry

Published online by Cambridge University Press:  01 October 2007

Y. Lebreton*
Affiliation:
GEPI, UMR 8111, Observatoire de Paris-Meudon, 92195 Meudon, France email: Yveline.Lebreton@obspm.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The understanding and modelling of the structure and evolution of stars is based on statistical physics as well as on hydrodynamics. Today, a precise identification and proper description of the physical processes at work in stellar interiors are still lacking (one key point being that of transport processes) while comparison of real stars to model predictions, which implies conversions from the theoretical space to the observational one, suffers from uncertainties in model atmospheres. This results in uncertainties on the prediction of stellar properties needed for galactic studies or cosmology (as stellar ages and masses). In the next decade, progress is expected from the theoretical, experimental and observational sides. I illustrate some of the problems we are facing when modelling stars and possible ways toward their solutions. I discuss how future observational ground-based or spatial programs (in particular those dedicated to micro-arc-second astrometry, asteroseismology and interferometry) will provide precise determinations of the stellar parameters and contribute to a better knowledge of stellar interiors and atmospheres in a wide range of stellar masses, chemical composition and evolution stages.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Alecian, E., Goupil, M.-J., Lebreton, Y., Dupret, M.-A., & Catala, C. 2007a, A&A, 465, 241Google Scholar
Alecian, E., Lebreton, Y., Goupil, M.-J., Dupret, M.-A., & Catala, C. 2007b, A&A, 473, 181Google Scholar
Allende Prieto, C. 2006, in: Kannappan, S. J., Redfield, S., Kessler-Silacci, J. E., Landriau, M., & Drory, N. (eds.), New Horizons in Astronomy: F. N. Bash Symp., ASP Conf. Ser.,352, 105Google Scholar
Asplund, M. 2005, ARAA, 43, 481CrossRefGoogle Scholar
Basu, S., Mazumdar, A., Antia, H. M., & Demarque, P. 2004, MNRAS, 350, 277CrossRefGoogle Scholar
Bedding, T. R. & Kjeldsen, H. 2007, CoAst, 150, 106Google Scholar
Christensen-Dalsgaard, J. 1988, in: Christensen-Dalsgaard, J. & Frandsen, S. (eds.), Advances in Helio- and Asteroseismology, IAU Symp. 123, p. 295CrossRefGoogle Scholar
Christensen-Dalsgaard, J., Arentoft, T., Brown, T. M., et al. 2007, CoAst, 150, 350Google Scholar
Cordier, D., Lebreton, Y., Goupil, M.-J., et al. 2002, A&A, 392, 169Google Scholar
ESA. 2000, White-Book, Gaia - Composition, Formation and Evolution of the Galaxy, Concept and Technology Study Report (ESA-SCI(2000)4), 1–381Google Scholar
Goupil, M. J. & Talon, S. 2002, in: Aerts, C., Bedding, T. R., & Christensen-Dalsgaard, J. (eds.), Radial and Nonradial Pulsations as Probes of Stellar Physics, ASP Conf. Ser., 259, 306Google Scholar
Grevesse, N., Asplund, M., & Sauval, A. J. 2007, Space Sci. Revs, 105Google Scholar
Grevesse, N. & Noels, A. 1993, in: Prantzos, N., Vangioni-Flam, E. and Casse, M. (eds.), Origin and Evolution of the Elements, CUP, p. 14Google Scholar
Gustafsson, B. 2004, in: McWilliam, A. & Rauch, M. (eds.), Origin and Evolution of the Elements, CUP, p. 104Google Scholar
Lebreton, Y. 2005, in: Turon, C., O'Flaherty, K. S., & Perryman, M. A. C. (eds.), The Three-Dimensional Universe with Gaia, ESA SP 576, 493Google Scholar
Lebreton, Y., Fernandes, J., & Lejeune, T. 2001, A&A, 374, 540Google Scholar
Lebreton, Y., Michel, E., Goupil, M. J., Baglin, A., & Fernandes, J. 1995, in: Hog, E. & Seidelmann, P. K. (eds.), Astronomical and Astrophysical Objectives of Sub-Milliarcsecond Optical Astrometry, IAU Symp. 166, 135CrossRefGoogle Scholar
Mathis, S., Eggenberger, P., Decressin, T., et al. 2007, in: Straka, C., Lebreton, Y., Monteiro, M. (eds.), Stellar Evolution and Seismic Tools for Asteroseismology, EAS Publi. Ser. 26, 65Google Scholar
Mazumdar, A. & Antia, H. M. 2001, A&A, 377, 192Google Scholar
Michel, E., Baglin, A., Auvergne, M., et al. 2006, in: Fridlund, M., Baglin, A., Lochard, J., & Conroy, L., (eds.), The CoRoT Mission, ESA SP 1306, 39Google Scholar
Miglio, A. & Montalbán, J. 2005, A&A, 441, 615Google Scholar
Montalbán, J., Miglio, A., Theado, S., Noels, A., & Grevesse, N. 2006, CoAst, 147, 80Google Scholar
Perryman, M. A. C., de Boer, K. S., Gilmore, G., et al. 2001, A&A, 369, 339Google Scholar
Piau, L., Ballot, J., & Turck-Chièze, S. 2005, A&A, 430, 571Google Scholar
Remington, B. A., Drake, R. P., & Ryutov, D. D. 2006, Rev. Mod. Phys., 78, 755CrossRefGoogle Scholar
Ribas, I., Jordi, C., & Giménez, Á. 2000, MNRAS, 318, L55CrossRefGoogle Scholar
Richard, D. & Zahn, J.-P. 1999, A&A, 347, 734Google Scholar
Roxburgh, I. W. & Vorontsov, S. V. 2003, A&A, 411, 215Google Scholar
Talon, S. 2007, ArXiv e-prints, 708Google Scholar
Unwin, S. C., Shao, M., Tanner, A. M., et al. 2007, ArXiv e-prints, 708Google Scholar
Walker, G., Matthews, J., Kuschnig, R., et al. 2003, PASP, 115, 1023CrossRefGoogle Scholar
Young, P. A., Mamajek, E. E., Arnett, D., & Liebert, J. 2001, ApJ, 556, 230Google Scholar
Zahn, J.-P. 2007, in: Kupka, F., Roxburgh, I., & Chan, K. (eds.), Convection in Astrophysics, Proc. IAU Symp. 239, p. 517Google Scholar