Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T12:17:21.915Z Has data issue: false hasContentIssue false

Statistical patterns in ground-based transit surveys

Published online by Cambridge University Press:  10 November 2011

Andrew Collier Cameron*
Affiliation:
SUPA, School of Physics & Astronomy, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK email: andrew.cameron@st-andrews.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As the number of known transiting planets from ground-based surveys passes the 100 mark, it is becoming possible to perform meaningful statistical analyses on their physical properties. Caution is needed in their interpretation, because subtle differences in survey strategy can lead to surprising selection effects affecting the distributions of planetary orbital periods and radii, and of host-star metallicity. Despite these difficulties, the planetary mass-radius relation appears to conform more or less to theoretical expectations in the mass range from Saturns to super-Jupiters. The inflated radii of many hot Jupiters indicate that environmental factors can have a dramatic effect on planetary structure, and may even lead to catastrophic loss of the planetary envelope under extreme irradiation. High-precision radial velocities and secondary-eclipse timing are yielding eccentricity measurements of exquisite precision. They show some hot Jupiters to be in almost perfectly circular orbits, while others remain slightly but significantly eccentric.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Alonso, R., et al. 2004, ApJ, 613, L153CrossRefGoogle Scholar
Bakos, G., Noyes, R. W., Kovács, G., Stanek, K. Z., Sasselov, D. D., & Domsa, I. 2004, PASP, 116, 266CrossRefGoogle Scholar
Baraffe, I., Selsis, F., Chabrier, G., Barman, T. S., Allard, F., Hauschildt, P. H., & Lammer, H. 2004, A&A, 419, L13Google Scholar
Campo, C. J., et al. 2011, ApJ, 727, 125CrossRefGoogle Scholar
Deming, D., Seager, S., Richardson, L. J., & Harrington, J. 2005, Nature, 434, 740CrossRefGoogle Scholar
Deming, D., Harrington, J., Laughlin, G., Seager, S., Navarro, S. B., Bowman, W. C., & Horning, K. 2007, ApJ, 667, L199CrossRefGoogle Scholar
Enoch, B., et al. 2011, MNRAS, 410, 1631Google Scholar
Ford, E. B. 2006, ApJ, 642, 505CrossRefGoogle Scholar
Fressin, F., Guillot, T., Morello, V., & Pont, F. 2007, A&A, 475, 729Google Scholar
Gillon, M., et al. 2010, A&A, 511, A3Google Scholar
Hellier, C., et al. 2009, Nature, 460, 1098CrossRefGoogle Scholar
Liddle, A. R. 2007, MNRAS, 377, L74CrossRefGoogle Scholar
Lucy, L. B. & Sweeney, M. A. 1971, AJ, 76, 544CrossRefGoogle Scholar
McCullough, P. R., Stys, J. E., Valenti, J. A., Fleming, S. W., Janes, K. A., & Heasley, J. N. 2005, PASP, 117, 783CrossRefGoogle Scholar
Nymeyer, S., et al. 2010, arXiv:1005.1017Google Scholar
O'Donovan, F. T., Charbonneau, D., Harrington, J., Madhusudhan, N., Seager, S., Deming, D., & Knutson, H. A. 2010, ApJ, 710, 1551CrossRefGoogle Scholar
Pollacco, D. L., et al. 2006, PASP, 118, 1407CrossRefGoogle Scholar
Robin, A. C., Reylé, C., Derrière, S., & Picaud, S. 2003, A&A, 409, 523Google Scholar
Seager, S. & Mallén-Ornelas, G. 2003, ApJ, 585, 1038CrossRefGoogle Scholar
Seager, S., Kuchner, M., Hier-Majumder, C. A., & Militzer, B. 2007, ApJ, 669, 1279CrossRefGoogle Scholar
Todorov, K., Deming, D., Harrington, J., Stevenson, K. B., Bowman, W. C., Nymeyer, S., Fortney, J. J., & Bakos, G. A. 2010, ApJ, 708, 498CrossRefGoogle Scholar
Triaud, A. H. M. J., et al. 2010, A&A, 524, A25Google Scholar
Udalski, A., et al. 2002, AcA, 52, 1Google Scholar
Wheatley, P. J., et al. 2010, arXiv:1004.0836Google Scholar
Zapolsky, H. S. & Salpeter, E. E. 1969, ApJ, 158, 809CrossRefGoogle Scholar