Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T05:52:10.101Z Has data issue: false hasContentIssue false

Turbulence, feedback, and slow star formation

Published online by Cambridge University Press:  01 August 2006

Mark R. Krumholz*
Affiliation:
Department of Astrophysical Science, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544, USA email: krumholz@astro.princeton.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One of the outstanding puzzles about star formation is why it proceeds so slowly. Giant molecular clouds convert only a few percent of their gas into stars per free-fall time, and recent observations show that this low star formation rate is essentially constant over a range of scales from individual cluster-forming molecular clumps in the Milky Way to entire starburst galaxies. This striking result is perhaps the most basic fact that any theory of star formation must explain. I argue that a model in which star formation occurs in virialized structures at a rate regulated by supersonic turbulence can explain this observation. The turbulence in turn is driven by star formation feedback, which injects energy to offset radiation from isothermal shocks and keeps star-forming structures from wandering too far from virial balance. This model is able to reproduce observational results covering a wide range of scales, from the formation times of young clusters to the extragalactic IR-HCN correlation, and makes additional quantitative predictions that will be testable in the next few years.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Blitz, L., Fukui, Y., Kawamura, A., Leroy, A., Mizuno, N. & Rosolowsky, E. 2005, in: Reipurth, B., Jewitt, D. & Keil, K. (eds.), Protostars & Planets V, in press, astro-ph/0602600Google Scholar
Bronfman, L., Casassus, S., May, J. & Nyman, L.-Å. 2000, A&A 358, 521Google Scholar
Downes, D. & Solomon, P. M. 1998, ApJ 507, 615CrossRefGoogle Scholar
Gao, Y. & Solomon, P. M. 2004, ApJS 152, 63CrossRefGoogle Scholar
Kennicutt, R. C. 1998, ApJ 498, 541CrossRefGoogle Scholar
Krumholz, M. R., Matzner, C. D. & McKee, C. F. 2006a, ApJ in press, astro-ph/0608471Google Scholar
Krumholz, M. R. & McKee, C. F. 2005, ApJ 630, 250CrossRefGoogle Scholar
Krumholz, M. R., Stone, J. M. & Gardiner, T. A. 2006b, ApJ submitted, astro-ph/0606539Google Scholar
Krumholz, M. R. & Tan, J. C. 2006, ApJ in press, astro-ph/0606277Google Scholar
Larson, R. B. 1981, MNRAS 194, 809CrossRefGoogle Scholar
Luna, A., Bronfman, L., Carrasco, L. & May, J. 2006, ApJ in press, astro-ph/0512046Google Scholar
Matzner, C. D. 2002, ApJ 566, 302CrossRefGoogle Scholar
McKee, C. F. 1999, in NATO ASIC Proc. 540: The Origin of Stars and Planetary Systems, 29CrossRefGoogle Scholar
McKee, C. F. & Williams, J. P. 1997, ApJ 476, 144CrossRefGoogle Scholar
Padoan, P. & Nordlund, Å. 2002, ApJ 576, 870CrossRefGoogle Scholar
Stone, J. M., Ostriker, E. C. & Gammie, C. F. 1998, ApJ 508, L99CrossRefGoogle Scholar
Tan, J. C., Krumholz, M. R. & McKee, C. F. 2006, ApJ 641, L121CrossRefGoogle Scholar
Wong, T. & Blitz, L. 2002, ApJ 569, 157CrossRefGoogle Scholar
Zuckerman, B. & Evans, N. J. 1974, ApJ 192, L149CrossRefGoogle Scholar