Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-11T06:42:30.730Z Has data issue: false hasContentIssue false

Understanding planes of satellites

Published online by Cambridge University Press:  30 October 2019

I. Santos-Santos
Affiliation:
Dpto. Física Teórica & CIAFF, Univ. Autónoma de Madrid, Madrid, Spain, email: isabelm.santos@uam.es
H. Artal
Affiliation:
Next Limit SL
R. Domínguez-Tenreiro
Affiliation:
Dpto. Física Teórica & CIAFF, Univ. Autónoma de Madrid, Madrid, Spain, email: isabelm.santos@uam.es
P. B. Tissera
Affiliation:
Dpto. Ciencias Físicas, Univ. Andrés Bello, Santiago, Chile
S. E. Pedrosa
Affiliation:
Instituto de Astronomía y Física del Espacio, Buenos Aires, Argentina
M. A. Gómez-Flechoso
Affiliation:
Dpto. Física de la Tierra y Astrofísica, Univ. Complutense de Madrid, Madrid, Spain
C. B. Brook
Affiliation:
Instituto Astrofísico de Canarias & Univ. de la Laguna, Tenerife, Spain
L. Bignone
Affiliation:
Dpto. Ciencias Físicas, Univ. Andrés Bello, Santiago, Chile
A. Serna
Affiliation:
Dpto. de Física y A.C., Univ. Miguel Hernández, Elche, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Reproducing the planes of co-orbiting satellites observed in the MW and M31 so far has represented a challenge for cosmological simulations. We have developed a new method to search for kinematically-coherent groups of satellites and applied it to 2 different cosmological hydro-simulations of disc galaxies. In each simulation we have found such a group, that represents roughly half of the total satellite population and is distributed on a fairly thin plane that persists in time. These results are compatible with the MW and M31 observed planes.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Ibata, R. A., Lewis, G. F., Conn, A. R., et al. 2013, Nature, 493, 62.CrossRefGoogle Scholar
Pawlowski, M. S., Pflamm-Altenburg, J., & Kroupa, P. 2012, MNRAS, 423, 1109.CrossRefGoogle Scholar
Müller, O., Pawlowski, M. S., Jerjen, H., et al. 2018, Science, 359, 534.CrossRefGoogle Scholar
Libeskind, N. I., Frenk, C. S., Cole, S., et al. 2005, MNRAS, 363, 146.CrossRefGoogle Scholar
Libeskind, N. I., Frenk, C. S., Cole, S., et al. 2009, MNRAS, 399, 550.CrossRefGoogle Scholar
Buck, T., Macciò, A. V., & Dutton, A. A. 2015, ApJ, 809, 49.CrossRefGoogle Scholar
Ahmed, S. H., Brooks, A. M., & Christensen, C. R. 2017, MNRAS, 466, 3119.CrossRefGoogle Scholar
Gillet, N., Ocvirk, P., Aubert, D., et al. 2015, ApJ, 800, 34.CrossRefGoogle Scholar
Maji, M., Zhu, Q., Marinacci, F., et al. 2017, ArXiv e-prints, arXiv:1702.00497.Google Scholar
Shao, S., Cautun, M., Frenk, C. S., et al. 2016, MNRAS, 460, 3772.CrossRefGoogle Scholar
Serna, A., Domnguez-Tenreiro, R., & Sáiz, A. 2003, ApJ, 597, 878.CrossRefGoogle Scholar
Springel, V., Wang, J., Vogelsberger, M., et al. 2008, MNRAS, 391, 1685.CrossRefGoogle Scholar
Martnez-Serrano, F. J., Serna, A., Domnguez-Tenreiro, R., et al. 2008, MNRAS, 388, 39.CrossRefGoogle Scholar
Pedrosa, S. E., & Tissera, P. B. 2015, A&A, 584, A43.Google Scholar
Pawlowski, M. S., Kroupa, P., & Jerjen, H. 2013, MNRAS, 435, 1928.CrossRefGoogle Scholar
McConnachie, A. W. 2012, AJ, 144, 4.CrossRefGoogle Scholar
Fritz, T. K., Battaglia, G., Pawlowski, M. S., et al. 2018, ArXiv e-prints, arXiv:1805.00908.Google Scholar
Libeskind, N. I., Hoffman, Y., Tully, R. B., et al. 2015, MNRAS, 452, 1052.CrossRefGoogle Scholar