Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T14:01:39.749Z Has data issue: false hasContentIssue false

Understanding the Galaxy

Invited talk

Published online by Cambridge University Press:  29 August 2019

L. Eyer*
Affiliation:
Geneva Observatory, University of Geneva, Switzerland email: Laurent.Eyer@unige.ch
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This general overview of our understanding of the Galaxy followed the lines of its main structures (halo, disc, bulge/bar) and emphasized some time-domain astronomy contributions. On the one hand the distance and tangential motions of the stars are essential to that understanding, and are obtained through multi-epoch surveys. On the other hand the chemistry of the stars and their radial velocities are also key elements for mapping the Galactic (sub-)structures, and unravelling their history and evolution. Contemporary surveys are revolutionizing our view of the Milky Way and of galaxies in general. Among those, the Gaia mission excels through its precise astrometry of 1.3 billion stars that populate the Milky Way and beyond, providing the first 3-D view of a major part of the Milky Way.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Aumer, M., Binney, J., & Schönrich, R. 2017, MNRAS, 470, 3685CrossRefGoogle Scholar
Beers, T. C., Carollo, D., Ivezić, Ž., et al. 2012, ApJ, 746, 34CrossRefGoogle Scholar
Belokurov, V., Zucker, D. B., Evans, N. W., et al. 2006, ApJ, 642, L137CrossRefGoogle Scholar
Binney, J. 2012, MNRAS, 426, 1324CrossRefGoogle Scholar
Bland-Hawthorn, J., & Gerhard, O. 2016, ARAA, 54, 529CrossRefGoogle Scholar
Casagrande, L., Silva Aguirre, V., Schlesinger, K. J., et al. 2016, MNRAS, 455, 987CrossRefGoogle Scholar
Catchpole, R. M., Whitelock, P. A., & Glass, I. S. 1990, MNRAS, 247, 479Google Scholar
Catchpole, R. M., Whitelock, P. A., Feast, M. W., et al. 2016, MNRAS, 455, 2216CrossRefGoogle Scholar
Catelan, M. 2009, Ap&SS, 320, 261Google Scholar
Clarke, C., Mathieu, R. D., & Reid, I. N., 2015, in: Bell, C. P. M., Eyer, L., & Meyer, M. R. (eds.), Dynamics of Young Star Clusters and Associations (Springer), p. 205CrossRefGoogle Scholar
Debattista, V. P., Ness, M., Earp, S. W. F., & Cole, D. R. 2015, ApJ, 812, L16CrossRefGoogle Scholar
Debattista, V. P., Ness, M., Gonzalez, O. A., et al. 2017, MNRAS, 469, 1587CrossRefGoogle Scholar
Eyre, A., & Binney, J. 2011, MNRAS, 413, 1852CrossRefGoogle Scholar
Gillessen, S., Plewa, P. M., Eisenhauer, F., et al. 2017, ApJ, 837, 30CrossRefGoogle Scholar
Jean-Baptiste, I., Di Matteo, P., Haywood, M., et al. 2017, A&A, 604, 106Google Scholar
Jurić, M., Ivezić, Ž., Brooks, A., et al. 2008, ApJ, 673, 864CrossRefGoogle Scholar
Küpper, A. H. W., Balbinot, E., Bonaca, A., et al. 2015, ApJ, 803, 80CrossRefGoogle Scholar
Launhardt, R., Zylka, R., & Mezger, P. G. 2002, A&A, 384, 112Google Scholar
Luri, X., et al. 2019, in: Montesinos, B., et al. (eds.), Highlights on Spanish Astrophysics X, p. 16Google Scholar
Perryman, M. A. C., de Boer, K. S., Gilmore, G., et al. 2001, A&A, 369, 339Google Scholar
Pietrukowicz, P., Kozłowski, S., Skowron, J., et al. 2015, ApJ, 811, 113CrossRefGoogle Scholar
Portail, M., Gerhard, O., Wegg, C., & Ness, M. 2017, MNRAS, 465, 1621CrossRefGoogle Scholar
Read, J. I. 2014, J. Physics G: Nuclear Physics, 41, 063101CrossRefGoogle Scholar
Revaz, Y., Arnaudon, A., Nichols, M., Bonvin, V., & Jablonka, P. 2016, A&A, 588, A21Google Scholar
Roškar, R., Debattista, V. P., Quinn, T. R., Stinson, G. S., & Wadsley, J. 2008, ApJ, 684, L79CrossRefGoogle Scholar
Schaye, J., Crain, R. A., Bower, R. G., et al. 2015, MNRAS, 446, 521CrossRefGoogle Scholar
Schödel, R., Merritt, D., & Eckart, A. 2009, A&A, 502, 91Google Scholar
Schönrich, R., & Binney, J. 2009, MNRAS, 396, 203CrossRefGoogle Scholar
Schönrich, R., Asplund, M., & Casagrande, L. 2011, MNRAS, 415, 3807CrossRefGoogle Scholar
Schönrich, R., Asplund, M., & Casagrande, L. 2014, ApJ, 786, 7CrossRefGoogle Scholar
Schönrich, R., Aumer, M., & Sale, S. E. 2015, ApJ, 812, L21CrossRefGoogle Scholar
Schutz, K., Lin, T., Safdi, B. R., & Wu, C.-L. 2017, arXiv:1711.03103Google Scholar
Sellwood, J. A., & Binney, J. J. 2002, MNRAS, 336, 785CrossRefGoogle Scholar
Sesar, B., Hernitschek, N., Dierickx, M. I. P., Fardal, M. A., & Rix, H-W. 2017, ApJ, 844, L4CrossRefGoogle Scholar
Sheffield, A. A., Price-Whelan, A. M., Tzanidakis, A., et al. 2018, ApJ, 854, 4710.3847/1538-4357/aaa4b6CrossRefGoogle Scholar
Starkenburg, E., Helmi, A., Morrison, H. L., et al. 2009, ApJ, 698, 567CrossRefGoogle Scholar
Vogelsberger, M., Genel, S., Springel, V., et al. 2014, MNRAS, 444, 1518CrossRefGoogle Scholar
Wegg, C., Gerhard, O., & Portail, M. 2015, MNRAS, 450, 4050CrossRefGoogle Scholar
Wetzel, A. R., Hopkins, P. F., Kim, J-h., et al. 2016, ApJ, 827, L23CrossRefGoogle Scholar
Wray, J. J., Eyer, L., & Paczyski, B. 2004, MNRAS, 349, 1059CrossRefGoogle Scholar
Xu, Y., Newberg, H. J., Carlin, J. L., et al. 2015, ApJ, 801, 105CrossRefGoogle Scholar