Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T19:15:13.886Z Has data issue: false hasContentIssue false

What triggers star formation in galaxies?

Published online by Cambridge University Press:  17 August 2012

Bruce G. Elmegreen*
Affiliation:
IBM Research Division, T.J. Watson Research Center1101 Kitchawan Road, Yorktown Heights, NY 10598USA email: bge@us.ibm.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Processes that promote the formation of dense cold clouds in the interstellar media of galaxies are reviewed. Those that involve background stellar mass include two-fluid instabilities, spiral density wave shocking, and bar accretion. Young stellar pressures trigger gas accumulation on the periphery of cleared cavities, which often take the form of rings by the time new stars form. Stellar pressures also trigger star formation in bright-rim structures, directly squeezing the pre-existing clumps in nearby clouds and clearing out the lower density gas between them. Observations of these processes are common. How they fit into the empirical star formation laws, which relate the star formation rate primarily to the gas density, is unclear. Most likely, star formation follows directly from the formation of cold dense gas, whatever the origin of that gas. If the average pressure from the weight of the gas layer is large enough to produce a high molecular fraction in the ambient medium, then star formation should follow from a variety of processes that combine and lose their distinctive origins. Pressurized triggering might have more influence on the star formation rate in regions with low average molecular fraction. This implies, for example, that the arm/interarm ratio of star formation efficiency should be higher in the outer regions of galaxies than in the main disks.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Ambartsumian, V. A. 1949, Soviet AJ, 26, 3Google Scholar
Athanassoula, E. 1992, MNRAS, 259, 345CrossRefGoogle Scholar
Audit, E. & Hennebelle, P. 2010, A&A, 511, 76Google Scholar
Bigiel, F., Leroy, A., Walter, F., et al. 2008, AJ, 136, 2846CrossRefGoogle Scholar
Bisbas, T. G., Wünsch, R., Whitworth, A. P., Hubber, D. A., & Walch, S. 2011, ApJ, 736, 142CrossRefGoogle Scholar
Daddi, E. et al. 2010a, ApJ, 713, 686CrossRefGoogle Scholar
Dale, D. A. et al. 2009, ApJ, 703, 517Google Scholar
Dale, J. E., Wünsch, R., Smith, R. J., Whitworth, A., & Palouš, J. 2011, MNRAS, 411, 2230Google Scholar
Davies, R., Förster Schreiber, N. M., Cresci, G., et al. 2011, ApJ, 741, 69CrossRefGoogle Scholar
Deharveng, L., Schuller, F., Anderson, L. D., et al. 2010, A&A, 523, 6Google Scholar
Desai, K. M., Chu, Y.-H., et al. 2010, AJ, 140, 584CrossRefGoogle Scholar
Edgeworth, K. E. 1946, MNRAS, 106, 470CrossRefGoogle Scholar
Efremov, Yu. N. 2010, MNRAS, 405, 1531Google Scholar
Ehlerová, S. & Palouš, J. 2005, A&A, 437, 101Google Scholar
Elmegreen, B. G. 1987, ApJ, 312, 626CrossRefGoogle Scholar
Elmegreen, B. G. 1994, ApJ, 427, 384Google Scholar
Elmegreen, B. C. 2011, ApJ, 737, 10CrossRefGoogle Scholar
Elmegreen, B. G., Kimura, T., & Tosa, M. 1995, ApJ, 451, 675CrossRefGoogle Scholar
Elmegreen, B. G., Elmegreen, D. M., Fernandez, M. X., & Lemonias, J. J. 2009a, ApJ, 692, 12Google Scholar
Elmegreen, B. G., Galliano, E., & Alloin, D. 2009, ApJ, 703, 1297Google Scholar
Elmegreen, D. M. 1980, ApJS, 43, 37CrossRefGoogle Scholar
Elmegreen, D. M. & Elmegreen, B. G. 1995, ApJ, 445, 591CrossRefGoogle Scholar
Elmegreen, D. M., Elmegreen, B. G., Marcus, M., et al. 2009b, ApJ, 701, 306Google Scholar
Elmegreen, D. M., Elmegreen, B. G., Yau, A. et al. 2011, ApJ, 737, 32CrossRefGoogle Scholar
Gao, Y. & Solomon, P. M. 2004, ApJ, 609, 271CrossRefGoogle Scholar
Genzel, R., Newman, S., Jones, T., et al. 2011, ApJ, 733, 101Google Scholar
Gil de Paz, A. et al. 2007, ApJS, 173, 185Google Scholar
Gnedin, N. Y. & Kravtsov, A. V. 2011, ApJ, 728, 88CrossRefGoogle Scholar
Grabelsky, D. A., Cohen, R. S., Bronfman, L., Thaddeus, P., & May, J. 1987, ApJ, 315, 122CrossRefGoogle Scholar
Gritschneder, M., Naab, T., Walch, S., Burkert, A., & Heitsch, F. 2009, ApJ, 694, L26.Google Scholar
Heiner, J. S., Allen, R. J., & van der Kruit, P. C. 2011, MNRAS, 416, 2Google Scholar
Heitsch, F., Hartmann, L. W., & Burkert, A. 2008, ApJ, 683, 786Google Scholar
Herrera, C. N., Boulanger, F., & Nesvadba, N. P. H. 2011, A&A, 534, 138Google Scholar
Hollis, A. J. 1996, J. British Astron. Assoc., 106, 354Google Scholar
Jog, C. J. & Solomon, P. M. 1984, ApJ, 276, 114CrossRefGoogle Scholar
Julian, W. H. & Toomre, A. 1966, ApJ, 146, 810Google Scholar
Kennicutt, R. C. Jr. 1998, ApJ, 498, 541Google Scholar
Kim, W.-T. & Ostriker, E. C. 2002, ApJ, 570, 132CrossRefGoogle Scholar
Kim, W.-T., Ostriker, E. C., & Stone, J. M. 2002, ApJ, 581, 1080Google Scholar
Klein, R. I., Sandford, M. T., & Whitaker, R. W. II 1983, ApJL, 271, 69CrossRefGoogle Scholar
Könyves, V., Kiss, Cs., Moór, A., Kiss, Z. T., & Tóth, L. V. 2007, A&A, 463, 1227Google Scholar
Lallement, R., Welsh, B. Y., Vergely, J. L., Crifo, F., & Sfeir, D. 2003, A&A, 411, 447Google Scholar
Leroy, A. K., Walter, F., Brinks, E. et al. 2008, AJ, 136, 2782Google Scholar
Lin, C. C. & Shu, F. H. 1964, ApJ, 140, 646Google Scholar
Lindblad, P. O., Grape, K., Sandqvist, A., & Schober, J. 1973, A&A, 24, 309Google Scholar
Matsuda, T. & Nelson, A. H. 1977, Nature, 266, 607Google Scholar
Patel, N. A., Goldsmith, P. F., Snell, R. L., Hezel, T., & Xie, T. 1995, ApJ, 447, 721Google Scholar
Rafikov, R. R. 2001, MNRAS, 323, 445CrossRefGoogle Scholar
Reach, W. T., et al. 2009, ApJ, 690, 683CrossRefGoogle Scholar
Roberts, W. W. 1969, ApJ, 158, 123CrossRefGoogle Scholar
Romeo, A. B. & Wiegert, J. 2011, MNRAS, 416, 1191CrossRefGoogle Scholar
Smith, N. 2010, MNRAS, 406, 952Google Scholar
Sugitani, K., Fukui, Y., Mizuni, A., & Ohashi, N. 1989, ApJL, 342, 87Google Scholar
Sugitani, K., Tamura, M., & Ogura, K. 1995, ApJL, 455, 39CrossRefGoogle Scholar
Tacconi, L., et al. 2010, Nature, 463, 781Google Scholar
Toomre, A. 1969, ApJ, 158, 899CrossRefGoogle Scholar
Toomre, A. 1981, in: Fall, S.M. (ed.), The structure and evolution of normal galaxies, (Cambridge: Cambridge University Press), p. 111.Google Scholar
Wu, J., Evans, N. J., I. I., & Gao, Y., et al. 2005, ApJ, 635, L173.Google Scholar
Zavagno, A., Deharveng, L., Comerón, F., et al. 2006, A&A, 446, 171Google Scholar