Article contents
When shape matters: Correcting the ICFs to derive the chemical abundances of bipolar and elliptical PNe
Published online by Cambridge University Press: 30 August 2012
Abstract
The extraction of chemical abundances of ionised nebulae from a limited spectral range is usually hampered by the lack of emission lines corresponding to certain ionic stages. So far, the missing emission lines have been accounted for by the ionisation correction factors (ICFs), constructed under simplistic assumptions like spherical geometry by using 1-D photoionisation modelling.
In this contribution we discuss the results (Gonçalves et al. 2011, in prep.) of our ongoing project to find a new set of ICFs to determine total abundances of N, O, Ne, Ar, and S, with optical spectra, in the case of non-spherical PNe. These results are based on a grid of 3-D photoionisation modelling of round, elliptical and bipolar shaped PNe, spanning the typical PN luminosities, effective temperatures and densities.
We show that the additional corrections to the widely used Kingsburgh & Barlow (1994) ICFs are always higher for bipolars than for ellipticals. Moreover, these additional corrections are, for bipolars, up to: 17% for oxygen, 33% for nitrogen, 40% for neon, 28% for argon and 50% for sulphur. Finally, on top of the fact that corrections change greatly with shape, they vary also greatly with the central star temperature, while the luminosity is a less important parameter.
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 7 , Symposium S283: Planetary Nebulae: An Eye to the Future , July 2011 , pp. 144 - 147
- Copyright
- Copyright © International Astronomical Union 2012
References
- 2
- Cited by