Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T00:39:00.338Z Has data issue: false hasContentIssue false

WKB thresholds of standard, helical, and azimuthal magnetorotational instability

Published online by Cambridge University Press:  21 February 2013

Oleg Kirillov
Affiliation:
Helmholtz-Zentrum Dresden-Rossendorf POB 51 01 19, 01314 Dresden, Germany email: o.kirillov@hzdr.de, f.stefani@hzdr.de
Frank Stefani
Affiliation:
Helmholtz-Zentrum Dresden-Rossendorf POB 51 01 19, 01314 Dresden, Germany email: o.kirillov@hzdr.de, f.stefani@hzdr.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider rotating flows of an electrically conducting, viscous and resistive fluid in an external magnetic field with arbitrary combinations of axial and azimuthal components. Within the short-wavelength approximation, the local stability of the flow is studied with respect to perturbations of arbitrary azimuthal wavenumbers. In the limit of vanishing magnetic Prandtl number (Pm) we find that the maximum critical Rossby number (Ro) for the occurrence of the magnetorotational instability (MRI) is universally governed by the Liu limit ${\rm Ro}_{Liu}=2-2\sqrt{2}\approx -0.828$ which is below the value for Keplerian rotation RoKepler = −0.75.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Balbus, S. A. & Hawley, J. F. 1991, ApJ 376, 214.CrossRefGoogle Scholar
Balbus, S. A. & Henri, P. 2008, ApJ 674, 408.Google Scholar
Hollerbach, R. & Rüdiger, G. 2005, Phys. Rev. Lett. 95, 124501.CrossRefGoogle Scholar
Hollerbach, R., Teeluck, V., & Rüdiger, G. 2010, Phys. Rev. Lett. 104, 044502.CrossRefGoogle Scholar
Kato, M. T., Nakamura, K., Tandokoro, R., Fujimoto, M., & Ida, S. 2009, ApJ 691, 1697.CrossRefGoogle Scholar
Kirillov, O. N. & Stefani, F. 2010, ApJ 712, 52.Google Scholar
Kirillov, O. N. & Stefani, F. 2011, Phys. Rev. E 84, 036304.CrossRefGoogle Scholar
Kirillov, O. N., Stefani, F., & Fukumoto, Y. 2012, ApJ 756, 83.CrossRefGoogle Scholar
Liu, W., Goodman, J., Herron, I., & Ji, H. T. 2006, Phys. Rev. E 74, 056302.CrossRefGoogle Scholar
Nornberg, M. D., Ji, H., Schartman, E., Roach, E., & Goodman, J. 2010, Phys. Rev. Lett. 104, 074501.CrossRefGoogle Scholar
Pessah, M. E. & Chan, C. 2008, ApJ 684, 498.CrossRefGoogle Scholar
Priede, J. 2011, Phys. Rev. E 84, 066314.CrossRefGoogle Scholar
Rüdiger, G. & Hollerbach, R. 2007, Phys. Rev. E 76, 068301.Google Scholar
Sisan, D. R.et al. 2004, Phys. Rev. Lett. 93, 114502.CrossRefGoogle Scholar
Stefani, F.et al. 2006, Phys. Rev. Lett. 97, 184502.CrossRefGoogle Scholar
Stefani, F.et al. 2009, Phys. Rev. E 80, 066303.Google Scholar
Umurhan, O. M. 2010, A&A 513, A47.Google Scholar