Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T14:48:09.783Z Has data issue: false hasContentIssue false

X-ray spectral model from clumpy torus and its application to Circinus galaxy

Published online by Cambridge University Press:  10 June 2020

Atsushi Tanimoto*
Affiliation:
Kyoto University
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We construct an X-ray spectral model for the clumpy torus in an active galactic nucleus (AGN), utilizing the Monte Carlo simulation for Astrophysics and Cosmology framework (MONACO: Odaka et al.2016). The geometry of the torus is the same as that in Nenkova et al. (2008), which assumes a power law distribution of clumps in the radial direction and a normal distribution in the elevation direction. We apply our model to the broadband X-ray spectrum of the Circinus galaxy observed with XMM-Newton, Suzaku, and NuSTAR. Our model can well reproduce the observed X-ray spectrum, yielding a hydrogen column density along the line-of-sight ${N_{\rm{H}}^{\rm{LOS}}} = 4.86_{ - 0.04}^{ + 0.07} \times {10^{24}}$ cm−2 and a torus angular width ${sigma = 14.7_{ - 0.39}^{ + 0.44}}$ degree.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Antonucci, R. 1993, Annual Review of Astronomy and Astrophysics, 31, 47310.1146/annurev.aa.31.090193.002353CrossRefGoogle Scholar
Arévalo, P., Bauer, F. E., Puccetti, S., et al. 2014, ApJ, 791, 8110.1088/0004-637X/791/2/81CrossRefGoogle Scholar
Furui, S., Fukazawa, Y., Odaka, H., et al. 2016, ApJ, 818, 16410.3847/0004-637X/818/2/164CrossRefGoogle Scholar
Ichikawa, K., Packham, C., Ramos Almeida, C., et al. 2015, ApJ, 803, 5710.1088/0004-637X/803/2/57CrossRefGoogle Scholar
Kormendy, J. & Ho, L. C. 2013, Annual Review of Astronomy and Astrophysics, 51, 51110.1146/annurev-astro-082708-101811CrossRefGoogle Scholar
Krolik, J. H. & Begelman, M. C. 1988, ApJ, 329, 70210.1086/166414CrossRefGoogle Scholar
Liu, Y. & Li, X. 2014, ApJ, 787, 5210.1088/0004-637X/787/1/52CrossRefGoogle Scholar
Murphy, K. D. & Yaqoob, T. 2009, MNRAS, 397, 154910.1111/j.1365-2966.2009.15025.xCrossRefGoogle Scholar
Nenkova, M., Sirocky, M. M., Ivezić, Ž., & Elitzur, M. 2008, ApJ, 685, 14710.1086/590482CrossRefGoogle Scholar
Odaka, H., Yoneda, H., Takahashi, T., & Fabian, A. 2016, MNRAS, 462, 236610.1093/mnras/stw1764CrossRefGoogle Scholar
Ramos Almeida, C. & Ricci, C. 2017, Nature Astronomy, 1, 67910.1038/s41550-017-0232-zCrossRefGoogle Scholar
Stalevski, M., Asmus, D., & Tristram, K. R. W. 2017, MNRAS, 472, 385410.1093/mnras/stx2227CrossRefGoogle Scholar
Urry, C. M. & Padovani, P. 1995, Publications of the Astronomical Society of the Pacific, 107, 80310.1086/133630CrossRefGoogle Scholar