Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T06:05:17.218Z Has data issue: false hasContentIssue false

Development of a Quantiative Evaluation Tool to Support the Development Process of Industry 4.0 Production Equipment

Published online by Cambridge University Press:  26 July 2019

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One of the main problems in the implementation of Industry 4.0 is the assessment of the added technical and economic value of the new digital and other technological opportunities. This can already be observed during the elaboration of solution alternatives during the development of new industry 4.0 work systems. In order to support the developers of these systems in their decision-making, this contribution introduces a quantitative evaluation approach based on the combination of an extension of the CPM/PDD approach with an industry 4.0 maturity model and an identification scheme for process losses.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s) 2019

References

Bauernhansl, T., Hompel, M. and Vogel-Heuser, B. (2014), Industrie 4.0 in Produktion, Automatisierung und Logistik: Anwendung - Technologien - Migration, Springer Fachmedien, Wiesbaden. https://doi.org/10.1007/978-3-658-04682-8Google Scholar
Botthof, A. and Hartmann, E. (2015), Zukunft der Arbeit in Industrie 4.0, Springer Vieweg, Berlin. https://doi.org/10.1007/978-3-662-45915-7Google Scholar
Bullinger, H. J. (1986), Systematische Montageplanung, Carl Hanser Verlag, München, Wien.Google Scholar
Crostack, A., Binz, H. and Roth, D. (2014), Concept of modelling the failure mode effects analysis (FMEA) on the base of characteristics-properties modelling (CPM), 58th Ilmenau Scientific Colloquium, Technische Universität Ilmenau, September 8 - 12.Google Scholar
Deubel, T., Zenner, C., Bley, H. and Weber, C. (2006), “Adaptation of a new Design Method for the Requirement-Driven Planning of Manufacturing Systems”, Proceedings of the 16th CIRP International Design Seminar – Design & Innovation for a Sustainable Society, Kananaskis, Alberta, Canada, July 16 - 19, Paper No. 10061, pp. 529534.Google Scholar
Eversheim, W. (1997), Organisation in der Produktionstechnik – Arbeitsvorbereitung, Springer, Berlin.Google Scholar
Feldmann, K. and Slama, S. (2001), “Highly flexible assembly - scope and justification: Hochflexible Montage - Anwendungsbereich und Wirtschaftlichkeitsnachweis”, 51st General Assembly of CIRP: Nancy/France, Aug 19-25, Bern, Edition Colibri, Elsevier, 2001 (CIRP Annals, 50), pp. 489498. https://doi.org/10.1016/s0007-8506(07)62987-4Google Scholar
Horst, A., Heribert, M., Pinkwart, A. and Reichwald, R. (2015), Management of Permanent Change, Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-05014-6Google Scholar
Karger, D.W. and Bayha, H.F. (1987), Engineered Work Measurement, Industrial Press, New York.Google Scholar
Kaufmann, T. (2015), Geschäftsmodelle in Industrie 4.0 und dem Internet der Dinge: Der Weg vom Anspruch in die Wirklichkeit, Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-10272-2Google Scholar
Kiel, D., Müller, J., Arnold, C., Voigt, K.-I. (2017), “Sustainable Industrial Value Creation: Benefits and Challenges of Industry 4.0”, The XXVIII ISPIM Innovation Conference - Composing the Innovation Symphony, Vienna/Austria, June 18-21. https://doi.org/10.1142/s1363919617400151Google Scholar
Köhler, C., Conrad, J., Wanke, S. and Weber, C. (2008), “A matrix representation of the CPM/PDD approach as a means for change impact analysis”, International Design Conference - Design 2008, Dubrovnik/Croatia, May 19 - 22, DS 48: Proceedings of the Design 2008, University of Zagreb, pp. 167174. https://doi.org/10.22028/D291-22502Google Scholar
Lotter, B. and Wiendahl, H.P. (2012), Montage in der industriellen Produktion: Ein Handbuch für die Praxis, Springer Vieweg, Heidelberg. https://doi.org/10.1007/978-3-642-29061-9Google Scholar
Moon, I., Lee, G., Park, J., Kiritsis, D., Von Cieminsk, G. (2018), Advances in Production Management Systems: Smart Manufacturing for Industry 4.0, Springer, Cham.Google Scholar
Digital, McKinsey (2015), Industry 4.0 - How to navigate digitization of the manufacturing sector, McKinsey & Company.Google Scholar
Ohno, T. (1988), Toyota Production System - Beyond large-scale production, Productivity Inc., Portland.Google Scholar
PwC and Strategy& (2014), Industrie 4.0: Chancen und Herausforderungen der vierten industriellen Revolution. [online] PwC and Strategy&. Available at: https://www.strategyand.pwc.com/media/file/Industrie-4-0.pdf (01.10.2018).Google Scholar
PwC (2018), Global Digital Operations Study 2018 Digital Champions: How industry leaders build integrated operations ecosystems to deliver end-to-end customer solutions. [online] PwC. Available at: https://www.strategyand.pwc.com/media/file/Global-Digital-Operations-Study_Digital-Champions.pdf (28.11.2018).Google Scholar
Roth, A. (2016), Einführung und Umsetzung von Industrie 4.0: Grundlagen, Vorgehensmodell und Use Cases aus der Praxis, Springer Gabler, Berlin. https://doi.org/10.1007/978-3-662-48505-7Google Scholar
Ustundag, A., Cevikcan, E. (2018), Industry 4.0: Managing The Digital Transformation, Springer International Publishing AG, Cham, Switzerland.Google Scholar
Wanke, S., Conrad, J. and Köhler, C. (2007), “Verhaltensbeschreibende Produktkataloge: Ein Anwendungsbeispiel der Solution Patterns des CPM/PDD Ansatzes”, In: Meerkamm, H. (Ed.): Design for X – Beiträge zum 18. Symposium (Neukirchen, 11. and 12. Oktober 2007), The Design Society, Lehrstuhl für Konstruktionstechnik, Erlangen, pp. 93102. https://doi.org/10.22028/D291-22485Google Scholar
VDMA. (2015), Leitfaden Industrie 4.0, VDMA Verlag, Frankfurt/MainGoogle Scholar
Vullings, R. and Heleven, M. (2015), Not Invented Here: Cross-Industry Innovation, BIS Publishers, Amsterdam.Google Scholar
Weber, C. (2005), Cpm/Pdd: An Extended Theoretical Approach To Modelling Products And Product Development Processe, Fraunhofer-IRB-Verlag, Stuttgart. In: Bley, H., Jansen, H., Krause, F.-L. and Shpitalni, M. (Eds.), Proceedings of the 2nd German-Israeli Symposium on Advances in Methods and Systems for Development of Products and Processes, TU Berlin / Fraunhofer-Institut für Produktionsanlagen and Konstruktionstechnik (IPK), 07.-08.07.2005, pp. 159179.Google Scholar
Weber, C. and Werner, H. (2000), “Klassifizierung von CAx-Werkzeugen für die Produktentwicklung auf der Basis eines neuartigen Produkt- und Prozessmodells”, 11. Symposium Design for X, Schnaittach, October 12 - 13, pp. 126143.Google Scholar
Weck, M. and Brecher, C. (2006), Werkzeugmaschinen 2: Konstruktion und Berechnung, Springer Vieweg, Berlin. https://doi.org/10.1007/3-540-30438-xGoogle Scholar
Westkämper, E. (2006a), “Research for Adaptive Assembly”, First CIRP International Seminar on Assembly Systems, Stuttgart, November 15 - 17, 2006, Fraunhofer-IRB-Verl., Stuttgart, pp. 915, ISBN 978-3-8167-7213-2Google Scholar
Westkämper, E. (2006b), Produktion: Wandlungsfähigkeit der industriellen Produktion, TCW-Report 44, TCW Transfer-Centrum, München. DOI 3-931511-88-XGoogle Scholar
Wildemann, H. (2018), Produktivität durch Industrie 4.0, TCW Transfer-Centrum, MünchenGoogle Scholar