Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T03:07:54.421Z Has data issue: false hasContentIssue false

Exploitation of AM-Potentials by Linking Manufacturing Processes to Function-Driven Product Design

Published online by Cambridge University Press:  26 July 2019

Jannik Reichwein*
Affiliation:
Technische Universität Darmstadt, Product Development and Machine Elements, Germany;
Jerome Kaspar
Affiliation:
Saarland University, Institute of Engineering Design, Germany
Michael Vielhaber
Affiliation:
Saarland University, Institute of Engineering Design, Germany
Eckhard Kirchner
Affiliation:
Technische Universität Darmstadt, Product Development and Machine Elements, Germany;
*
Contact: Reichwein, Jannik, Technische Universität Darmstadt, Produktentwicklung und Maschinenelemente, Germany, reichwein@pmd.tu-darmstadt.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Additive Manufacturing (AM) processes had an extensively and substantially technological growth over the past years that directly influences the continuously increased and manifold possibilities for processing new and innovative products. However, additively manufactured products mostly are still fabricated with only small adaptions compared to conventional parts, and thus waste many design potentials although specific design guidelines have been widely developed to restrict geometrical deficiencies or suggest improvements in component design.

As a result, this contribution furtherly aims to systematically consider AM potentials already on the functional level of product development offering significant but until now still not or just insufficiently exploited potentials. Therefore, the presented approach uses the already proven Design Pattern Matrix (DPM) approach for conventional technologies extended by a concurrent selection of materials and processes specifically for AM. Here, the DPM derives information about the manufacturing process in form of design elements and links them to the function carriers of the product including a methodological determination of requirements.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s) 2019

References

Adam, G.A.O. and Zimmer, D. (2014), “Design for Additive Manufacturing - Element transitions and aggregated structures”, CIRP Journal of Manufacturing Science and Technology, Vol. 7 No. 1, pp. 2028. https://doi.org/10.1016/j.cirpj.2013.10.001Google Scholar
Ashby, M.F. (2011), Materials selection in mechanical design, Butterworth-Heinemann, Oxford. https://doi.org/10.1016/C2009-0-25539-5Google Scholar
Ehrlenspiel, K., Meerkamm, H. (2013), Integrierte Produktentwicklung. Denkabläufe, Methodeneinsatz, Zusammenarbeit, Hanser, MünchenGoogle Scholar
Gebhardt, A. (2016), Additive Fertigungsverfahren. Additive Manufacturing und 3D-Drucken für Prototyping - Tooling - Produktion, Hanser, München.Google Scholar
Gibson, I., Rosen, D. and Stucker, B. (2015), Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Springer-Verlag, New York. https://doi.org/10.1007/978-1-4939-2113-3Google Scholar
Kaspar, J. and Vielhaber, M. (2016), “Cross-Component Systematic Approach for Lightweight and Material-Oriented Design”, DS 85-1: Proceedings of NordDesign 2016, Vol. 1, pp. 332341.Google Scholar
Kaspar, J., Choudry, S.A. and Vielhaber, M. (2018), “Concurrent Selection of Material and Joining Technology - Holistically Relevant Aspects and Its Mutual Interrelations in Lightweight Engineering”, Procedia CIRP, Vol. 72, pp. 780785. https://doi.org/10.1016/j.procir.2018.03.093Google Scholar
Kaspar, J., Reichwein, J., Kirchner, E. and Vielhaber, M. (2019), “Integrated Design Pattern Matrix for Additive Manufacturing - A Holistic Potential Analysis for Systemic Product and Production Engineering”, Procedia CIRP, Vol. XX, p. XXX-XXX. (To be published)Google Scholar
Kranz, J., Herzog, D. and Emmelmann, C. (2015), “Design guidelines for laser additive manufacturing of lightweight structures in TiAl6V4”, Journal of Laser Applications, Vol. 27 No. S1, pp. 14001.114001.16. https://doi.org/10.2351/1.4885235Google Scholar
Kranz, J. (2017), Methodik und Richtlinien für die Konstruktion von laseradditiv gefertigten Leichtbaustrukturen, Springer-Verlag, Berlin Heidelberg. https://doi.org/10.1007/978-3-662-55339-8Google Scholar
Kumke, M. (2018), Methodisches Konstruieren von additiv gefertigten Bauteilen, Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-658-22209-3Google Scholar
Leary, M., Merli, L., Torti, F., Mazur, M. and Brandt, M. (2014), “Optimal topology for additive manufacture: A method for enabling additive manufacture of support-free optimal structures”, Materials and Design, Vol. 63, pp. 678690. https://doi.org/10.1016/j.matdes.2014.06.015Google Scholar
Lindemann, C., Reiher, T., Jahnke, U., Koch, R. (2015), “Towards a sustainable and economic selection of part candidates for additive manufacturing”, Rapid Prototyping Journal, Vol. 21 No. 2, pp. 216227. https://doi.org/10.1108/RPJ-12-2014-0179Google Scholar
Pahl, G., Beitz, W., Feldhusen, J., Grote, K.-H. (2007), Konstruktionslehre -Grundlagen erfolgreicher Produktentwicklung; Methoden und Anwendung, Springer, Heidelberg. https://doi.org/10.1007/978-3-540-34061-4Google Scholar
Robbins, J., Owen, S.J., Clark, B.W. and Voth, T.E. (2016), “An efficient and scalable approach for generating topologically optimized cellular structures for additive manufacturing”, Additive Manufacturing, Vol. 12 No. B, p. 296304. https://doi.org/10.1016/j.addma.2016.06.013Google Scholar
Roos, M. (2018), Ein Betrag zur einheitlichen Modellierung und durchgängigen Nutzung fertigungstechnologischen Wissens im Produktentwicklungsprozess. Dissertation Technische Universität Darmstadt.Google Scholar
Schmidt, T. (2016), Potentialbewertung generativer Fertigungsverfahren für Leichtbauteile, Springer-Verlag, Berlin Heidelberg. https://doi.org/10.1007/978-3-662-52996-6Google Scholar
Takezawa, A. and Kobashi, M. (2016), “Design methodology for porous composites with tunable thermal expansion produced by multi-material topology optimization and additive manufacturing”, Composites Part B: Engineering, Vol. 131, p. 2129. https://doi.org/10.1016/j.compositesb.2017.07.054Google Scholar
Thompson, M.K., Moroni, G., Vaneker, T., Fadel, G., Campbell, R. I., Gibson, I., Bernard, A., Schulz, J., Graf, P., Ahuja, B., Martina, F. (2016), “Design for Additive Manufacturing”, CIRP Annals, Vol. 65, No. 2. 2016, pp. 737760.Google Scholar
Würtenberger, J., Reichwein, J. and Kirchner, E. (2018), “Using the potentials of additive manufacturing by a systematic linkage of the manufacturing process to product design”, proceedings of the DESIGN 2018 15th International Design Conference, pp. 14651576. https://doi.org/10.21278/idc.2018.0225Google Scholar