Published online by Cambridge University Press: 26 July 2019
Additive Manufacturing (AM) processes had an extensively and substantially technological growth over the past years that directly influences the continuously increased and manifold possibilities for processing new and innovative products. However, additively manufactured products mostly are still fabricated with only small adaptions compared to conventional parts, and thus waste many design potentials although specific design guidelines have been widely developed to restrict geometrical deficiencies or suggest improvements in component design.
As a result, this contribution furtherly aims to systematically consider AM potentials already on the functional level of product development offering significant but until now still not or just insufficiently exploited potentials. Therefore, the presented approach uses the already proven Design Pattern Matrix (DPM) approach for conventional technologies extended by a concurrent selection of materials and processes specifically for AM. Here, the DPM derives information about the manufacturing process in form of design elements and links them to the function carriers of the product including a methodological determination of requirements.