Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T14:47:10.187Z Has data issue: false hasContentIssue false

IX.—The Propagation of Thermal Stresses in Thin Metallic Rods*

Published online by Cambridge University Press:  14 February 2012

I. N. Sneddon
Affiliation:
The University of Glasgow.

Synopsis

If the temperature in an elastic rod is not uniform and if it varies with time, dynamic thermal stresses are set up in the rod. This paper is concerned with the calculation of the distribution of temperature and stress in an elastic rod when its ends are subjected to mechanical or thermal disturbances. Simple waves in an infinite rod are first discussed and then boundary value problems for semi-infinite rods and rods of finite length. The paper concludes with an account of an approximate method of solving the equations of thermoelasticity.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1959

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Biot, M. A., 1956. “Thermoelasticity and Irreversible Thermodynamics”, J. Appl. Phys., 27, 240.CrossRefGoogle Scholar
Brillouin, L., 1938. Tenseurs en Mécanique et en Élasticité. Paris: Masson et Cie.Google Scholar
Carslaw, H. S., and Jaeger, J. C., 1947. The Conduction of Heat in Solids. Oxford University Press.Google Scholar
Chadwick, P., and Sneddon, I. N., 1958. “Plane Waves in an Elastic Solid Conducting Heat”, J. Mech. Phys. Solids, 6, 223.CrossRefGoogle Scholar
Deresiewicz, H., 1957. “Plane Waves in a Thermoelastic Solid”, J. Acoust, Soc. Amer., 29, 204.CrossRefGoogle Scholar
Duhamel, J. M. C., 1837. “Second Mémoire sur les Phénomènes Thermo-Mécanique”, J. Éc. Polyt. Paris, 15, 1.Google Scholar
Erdélyi, A. (Edit.), 1954. Tables of Integral Transforms. Vol. 1. New York: McGraw-Hill Book Co.Google Scholar
Jeffreys, H., 1930. “The Thermodynamics of an Elastic Solid”, Proc. Camb. Phil. Soc., 26, 101.CrossRefGoogle Scholar
Lessen, M., 1956. “Thermoelasticity and Thermal Shock”, J. Mech. Phys. Solids, 5, 57.CrossRefGoogle Scholar
Lessen, M., 1957. “The Motion of a Thermoelastic Solid”, Quart. Appl. Math., 15, 105.CrossRefGoogle Scholar
Sokolnikoff, I. S., 1956. The Mathematical Theory of Elasticity. New York: McGraw-Hill Book Co.Google Scholar
Sneddon, I. N., 1951. Fourier Transforms. New York: McGraw-Hill Book Co.Google Scholar
Voigt, W., 1910. Lehrbuch der Kristallphysik. Berlin: Teubner-Verlag.Google Scholar
Weiner, J. H., 1957. “A Uniqueness Theorem for the Coupled Thermoelastic Problem”, Quart. Appl. Math., 15, 102.CrossRefGoogle Scholar