We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
In this paper, we look for the weight functions (say g) that admit the following generalized Hardy-Rellich type inequality:
$$\int_\Omega g (x)u^2 dx \les C\int_\Omega \vert \Delta u \vert ^2 dx,\quad \forall u\in {\rm {\cal D}}_0^{2,2} (\Omega ),$$
for some constant C > 0, where Ω is an open set in ℝN with N ⩾ 1. We find various classes of such weight functions, depending on the dimension N and the geometry of Ω. Firstly, we use the Muckenhoupt condition for the one-dimensional weighted Hardy inequalities and a symmetrization inequality to obtain admissible weights in certain Lorentz-Zygmund spaces. Secondly, using the fundamental theorem of integration we obtain the weight functions in certain weighted Lebesgue spaces. As a consequence of our results, we obtain simple proofs for the embeddings of ${\cal D}_0^{2,2} $ into certain Lorentz-Zygmund spaces proved by Hansson and later by Brezis and Wainger.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
1
1Adams, D.R.. A sharp inequality of J. Moser for higher order derivatives. Ann. of Math. (2)128 (1988), 385–398.CrossRefGoogle Scholar
2
2Adimurthi, A. and Santra, S.. Generalized Hardy-Rellich inequalities in critical dimension and its applications. Commun. Contemp. Math.11 (2009), 367–394.CrossRefGoogle Scholar
3
3Adimurthi, A., Chaudhuri, N. and Ramaswamy, M.. An improved Hardy-Sobolev inequality and its application. Proc. Amer. Math. Soc.130 (2002), 489–505 (electronic).CrossRefGoogle Scholar
4
4Adimurthi, A., Grossi, M. and Santra, S.. Optimal Hardy-Rellich inequalities, maximum principle and related eigenvalue problem. J. Funct. Anal.240 (2006), 36–83.CrossRefGoogle Scholar
5
5Allegretto, W.. Principal eigenvalues for indefinite-weight elliptic problems in ℝn. Proc. Amer. Math. Soc.116 (1992), 701–706.Google Scholar
6
6Anoop, T.V.. A note on generalized Hardy-Sobolev inequalities. Int. J. Anal.2013 (2013), 1–9.CrossRefGoogle Scholar
7
7Anoop, T.V., Lucia, M. and Ramaswamy, M.. Eigenvalue problems with weights in Lorentz spaces. Calc. Var. Partial Diff. Equ.36 (2009), 355–376.CrossRefGoogle Scholar
8
8Bennett, C. and Rudnick, K.. On Lorentz-Zygmund spaces. Dissertationes Math. (Rozprawy Mat.)175 (1980), 67.Google Scholar
9
9Bennett, C. and Sharpley, R.. Interpolation of operators, volume 129 of Pure and Applied Mathematics (Boston, MA: Academic Press, Inc., 1988).Google Scholar
10
10Brézis, H. and Vázquez, J.L.. Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Complut. Madrid10 (1997), 443–469.Google Scholar
11
11Brézis, H. and Wainger, S.. A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm. Partial Diff. Equ.5 (1980), 773–789.CrossRefGoogle Scholar
12
12Cianchi, A.. Second-order derivatives and rearrangements. Duke Math. J.105 (2000), 355–385.CrossRefGoogle Scholar
13
13Cianchi, A.. Symmetrization and second-order Sobolev inequalities. Ann. Mat. Pura Appl. (4)183 (2004), 45–77.CrossRefGoogle Scholar
14
14Edelson, A.L. and Rumbos, A.J.. Linear and semilinear eigenvalue problems in ℝn. Comm. Partial Diff. Equ.18 (1993), 215–240.CrossRefGoogle Scholar
15
15Edmunds, D.E. and Evans, W.D.. Hardy operators, function spaces and embeddings. Springer Monographs in Mathematics (Berlin: Springer-Verlag, 2004).CrossRefGoogle Scholar
16
16Edmunds, D.E. and Triebel, H.. Sharp Sobolev embeddings and related Hardy inequalities: the critical case. Math. Nachr.207 (1999), 79–92.CrossRefGoogle Scholar
17
17Edmunds, D.E., Kerman, R. and Pick, L.. Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms. J. Funct. Anal.170 (2000), 307–355.CrossRefGoogle Scholar
18
18Filippas, S. and Tertikas, A.. Optimizing improved Hardy inequalities. J. Funct. Anal.192 (2002), 186–233.CrossRefGoogle Scholar
19
19Ghoussoub, N. and Moradifam, A.. On the best possible remaining term in the Hardy inequality. Proc. Natl. Acad. Sci. USA105 (2008), 13746–13751.CrossRefGoogle ScholarPubMed
20
20Ghoussoub, N. and Moradifam, A.. Bessel pairs and optimal Hardy and Hardy-Rellich inequalities. Math. Ann.349 (2011), 1–57.CrossRefGoogle Scholar
21
21Ghoussoub, N. and Moradifam, A.. Functional inequalities: new perspectives and new applications, volume 187 of Mathematical Surveys and Monographs (Providence, RI: American Mathematical Society, 2013).Google Scholar
22
22Grafakos, L.. Classical Fourier analysis, 2nd edn, volume 249 of Graduate Texts in Mathematics (New York: Springer, 2008).Google Scholar
23
23Hansson, K.. Imbedding theorems of Sobolev type in potential theory. Math. Scand.45 (1979), 77–102.CrossRefGoogle Scholar
24
24Hörmander, L. and Lions, J.L.. Sur la complétion par rapport à une intégrale de Dirichlet. Math. Scand.4 (1956), 259–270.CrossRefGoogle Scholar
26Kufner, A., Maligranda, L. and Persson, L.-E.. The Hardy inequality. Vydavatelský Servis, Plzeň, 2007. About its history and some related results.Google Scholar
27
27Lorentz, G.G.. Some new functional spaces. Ann. of Math. (2)51 (1950), 3–755.CrossRefGoogle Scholar
28
28Manes, A. and Micheletti, A.M.. Un'estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine. Boll. Un. Mat. Ital. (4)7 (1973), 285–301.Google Scholar
29
29Milman, M. and Pustylnik, E.. On sharp higher order Sobolev embeddings. Commun. Contemp. Math.6 (2004), 495–511.CrossRefGoogle Scholar
30
30Muckenhoupt, B.. Hardy's inequality with weights. Studia Math.44 (1972), 31–38. Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, I.CrossRefGoogle Scholar
31
31O'Neil, R.. Convolution operators and L(p, q spaces. Duke Math. J.30 (1963), 129–142.CrossRefGoogle Scholar
32
32Rellich, F.. Halbbeschränkte Differentialoperatoren höherer Ordnung. In Proceedings of the International Congress of Mathematicians, 1954 (ed. Erven, P. and Noordhoff, N.V.). Amsterdam, vol. III, pp. 243–250 (Amsterdam: Groningen; North-Holland Publishing Co., 1956).Google Scholar
33
33Stavrakakis, N.M. and Zographopoulos, N.. Global bifurcation results for a semilinear biharmonic equation on all of ℝN. Z. Anal. Anwendungen18 (1999), 753–766.CrossRefGoogle Scholar
34
34Tarsi, C.. Adams' inequality and limiting Sobolev embeddings into Zygmund spaces. Potential Anal.37 (2012), 353–385.CrossRefGoogle Scholar
35
35Tertikas, A. and Zographopoulos, N.B.. Best constants in the Hardy-Rellich inequalities and related improvements. Adv. Math.209 (2007), 407–459.CrossRefGoogle Scholar
36
36Visciglia, N.. A note about the generalized Hardy-Sobolev inequality with potential in Lp, d(ℝn). Calc. Var. Partial Diff. Equ.24 (2005), 167–184.CrossRefGoogle Scholar
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Anoop, T. V.
and
Das, Ujjal
2021.
The compactness and the concentration compactness via p-capacity.
Annali di Matematica Pura ed Applicata (1923 -),
Vol. 200,
Issue. 6,
p.
2715.
Anoop, T. V.
Biswas, Nirjan
and
Das, Ujjal
2021.
Admissible function spaces for weighted Sobolev inequalities.
Communications on Pure & Applied Analysis,
Vol. 20,
Issue. 9,
p.
3259.