Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T23:38:55.475Z Has data issue: false hasContentIssue false

The structure of the bounded trajectories set of a scalar convex differential equation

Published online by Cambridge University Press:  12 July 2007

A. I. Alonso
Affiliation:
ETSII Departamento de Matemática Aplicada a la Ingeniería, Paseo del Cauce s/n. 47011, Universidad de Valladolid, Spainanaalo@wmatem.eis.uva.es
R. Obaya
Affiliation:
ETSII Departamento de Matemática Aplicada a la Ingeniería, Paseo del Cauce s/n. 47011, Universidad de Valladolid, Spainrafoba@wmatem.eis.uva.es

Abstract

The present paper describes the topological and ergodic structure of the set of bounded trajectories of the flow defined by a scalar convex differential equation. We characterize the minimal subsets, the ergodic measures concentrated on them, and study the longtime behaviour of the bounded trajectories in terms of the Lyapunov exponents of the linearized equations. In particular, we obtain conditions that guarantee the existence of almost-periodic, almost-automorphic and recurrent solutions.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)