Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T23:37:58.408Z Has data issue: false hasContentIssue false

A class of contracted inverse semigroup rings

Published online by Cambridge University Press:  14 November 2011

W. D. Munn
Affiliation:
Department of Mathematics, University of Glasgow, Glasgow G12 8QW, U.K.

Synopsis

Contracted inverse semigroup rings are studied subject to the restriction that the semilattices of the given inverse semigroups satisfy a certain finiteness condition, introduced in 1980 by Teply, Turman and Quesada. Results are obtained on semiprimitivity, primitivity, primeness, decomposition into a direct sum of ideals, and chain conditions on one-sided ideals.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bass, H.. Finitistic dimension and a homological generalization of semi-primary rings. Trans. Amer. Math. Soc. 95 (1960), 466488.CrossRefGoogle Scholar
2Björk, J.-E.. Rings satisfying a minimum condition on principal ideals. J. Reine Angew. Math. 236 (1969), 112119.Google Scholar
3Brown, B. and McCoy, N. H.. The radical of a ring. Duke Math. J. 15 (1948), 495499.CrossRefGoogle Scholar
4Clifford, A. H. and Preston, G. B.. The algebraic theory of semigroups. Math. Surveys 7 (Providence, R.I.: Amer. Math. Soc, 1961 (vol. I) and 1967 (vol. II)).Google Scholar
5Connell, I. G.. On the group ring. Canad. J. Math. 15 (1963), 650685.CrossRefGoogle Scholar
6Domanov, O. I.. Semisimplicity and identities of inverse semigroup algebras. Rings and Modules. Mat. Issled. 38 (1976), 123137.Google Scholar
7Domanov, O. I.. Perfect semigroup rings. Sibirskũ Mat. Zh. 18 (1977), 294303.Google Scholar
8Formanek, E.. Group rings of free products are primitive. J. Algebra 26 (1973), 508511.CrossRefGoogle Scholar
9Jacobson, N.. Structure of rings. Colloquium Publications 37 (Providence, R.I.: Amer. Math. Soc, 1956).Google Scholar
10Lambek, J., Lectures on rings and modules (Waltham, Mass.: Blaisdell, 1966).Google Scholar
11Munn, W. D.. The idempotent-separating congruences on a regular 0-bisimple semigroup. Proc Edinburgh Math. Soc. (2) 15 (1967), 233240.CrossRefGoogle Scholar
12Munn, W. D.. Congruence-free inverse semigroups. Quart. J. Math. Oxford Ser. (2) 25 (1974) 463–84.CrossRefGoogle Scholar
13Munn, W. D.. Free inverse semigroups. Proc. London Math. Soc. (3) 29 (1974), 385404.CrossRefGoogle Scholar
14Munn, W. D.. Semiprimitivity of inverse semigroup algebras. Proc. Roy. Soc. Edinburgh Sect. A 93 (1982), 8398.CrossRefGoogle Scholar
15Munn, W. D.. The algebra of a combinatorial inverse semigroup. J. London Math. Soc. (2) 27 (1983), 3538.CrossRefGoogle Scholar
16Munn, W. D.. Two examples of inverse semigroup algebras. Semigroup Forum 35 (1987), 127134.CrossRefGoogle Scholar
17Munn, W. D.. A class of inverse semigroup algebras. Semigroups and their applications, ed. Goberstein, S. M. and Higgins, P. M., pp. 111119 (Dordrecht: D. Reidel, 1987).CrossRefGoogle Scholar
18Okniński, J.. When is the semigroup ring perfect? Proc. Amer. Math. Soc. 89 (1983), 4951.CrossRefGoogle Scholar
19Okniński, J.. Noetherian property for semigroup rings. Proc. Granada Conference on Ring Theory (to appear).Google Scholar
20Ponizovskĩĩ, I. S.. An example of a semiprimitive semigroup algebra. Semigroup Forum 26 (1983), 225228.CrossRefGoogle Scholar
21Renault, G.. Sur les anneaux de groupes. C. R. Acad. Sci. Paris Sér. A-B 273 (1971), A84–A87.Google Scholar
22Rukolatne, A. V.. The centre of the semigroup algebra of a finite inverse semigroup over the field of complex numbers. Rings and linear groups Zap. Naučn. Sem. Leningrad Otdel. Mat. Inst. Steklov 75 (1978), 154158.Google Scholar
23Rukolaĭne, A. V.. Semigroup algebras of finite inverse semigroups over arbitrary fields. Modules and linear groups. Zap. Naučn. Sent. Leningrad Otdel. Mat. Inst. Steklov 103 (1980), 117123.Google Scholar
24Shoji, K.. On semigroup rings. Proc. 9th Symposium on semigroups and related topics, Naruto Univ., 1985, 2834.Google Scholar
25Teply, M. L., Turman, E. G. and Quesada, A.. On semisimple semigroup rings. Proc. Amer. Math. Soc. 79 (1980), 157163.CrossRefGoogle Scholar
26Woods, S. M.. On perfect group rings. Proc. Amer. Math. Soc. 27 (1971), 4952.CrossRefGoogle Scholar
27Zelmanov, E. I.. Semigroup algebras with identities. Sibirskũ Mat. Zh. 18 (1977), 787798.Google Scholar