Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T07:21:25.188Z Has data issue: false hasContentIssue false

Gradient estimates for degenerate diffusion equations II

Published online by Cambridge University Press:  14 November 2011

Nicholas D. Alikakos
Affiliation:
Mathematics Department, Purdue University, West Lafayette, Indiana 47907, U.S.A.
Rouben Rostamian
Affiliation:
Mathematics Department, Purdue University, West Lafayette, Indiana 47907, U.S.A.

Synopsis

We establish upper and lower bounds for various norms of solutions and their gradients for the equation ut = div (|∇u|m−1u) in ℝN in terms of the norms of the initial data. Based on the L estimate of ∇u, we conclude that u(x, t) is Lipschitz continuous in space-time, for all t>0, whenever u(x,0) is in L1(ℝN).

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Alikakos, N. D.. An application of the invariance principle to reaction-diffusion equations. J. Differential Equations 33 (1979), 201225.CrossRefGoogle Scholar
2Alikakos, N. D.. L p bounds of solutions of reaction-diffusion equations. Comm. Partial Differential Equations 4 (1979), 827868.CrossRefGoogle Scholar
3Alikakos, N. D. and Rostamian, R.. Large time behavior of solutions of Neumann boundary value problem for the porous medium equation. Indiana Univ. Math. J. 30 (1981), 749785.CrossRefGoogle Scholar
4Alikakos, N. D. and Rostamian, R.. Gradient estimates for degenerate diffusion equations I. Math. Ann. (1982), to appear.CrossRefGoogle Scholar
5Ames, W. F.. Nonlinear Partial Differential Equations in Engineering Vol. I (New York: Academic Press, 1965).Google Scholar
6Attouch, H. and Damlamian, A.. Application des methodes de convexité et monotonie a l'étude de certaines équations quasilinéaires. Proc. Roy. Soc. Edinburgh Sect. A 79 (1977), 107129.CrossRefGoogle Scholar
7Berryman, G. J. and Holland, C. J.. Stability of separable solution for fast diffusion. Arch. Rational Mech. Anal. 74 (1980), 379388.CrossRefGoogle Scholar
8Crandall, M. G. and Bénilan, Ph.. Regularizing effects of homogeneous evolution equations, (preprint).Google Scholar
9Evans, L. C.. Application of nonlinear semigroup theory to certain partial differential equations. In Nonlinear Evolution Equations ed. Crandall, M. G. (New York: Academic Press, 1978).Google Scholar
10Evans, L. C.. Regularity properties for the heat equation subject to nonlinear boundary constraints. J. Nonlinear Anal. 1 (1977), 593602.CrossRefGoogle Scholar
11Friedman, A..Partial Differential Equations (New York: Holt, Rinehart and Winston, 1969).Google Scholar
12Herrero, M. A. and Vazquez, J. L.. Asymptotic behavior of solutions of a strongly nonlinear parabolic equation, to appear.Google Scholar
13Lions, J. L.. Quelques méthodes de résolution des problémes aux limites non lineaires (Paris: Dunod, 1969).Google Scholar
14Moser, J.. A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations. Comm. Pure Appl. Math. 13 (1960), 457468.CrossRefGoogle Scholar
15Simon, J.. Regularité de solutions de problemes non lináires. C.R. Acad. Sci. Paris 282 (1976), 947950.Google Scholar
16Veron, L.. Coercivite et proprietes regularisantes des semi-groupes non lineaires dans les espaces de Banach. Publ. Math. Besancon (1977).Google Scholar
17Vishik, I. M.. On the solutions of boundary value problems for quasilinear parabolic equations of arbitrary order. Mat. Sbornik 59 (1962), 289325 (In Russian).Google Scholar
18Gurtin, M. G. and McCamy, R. C.. On the diffusion of biological populations. Math. Biosci. 33 (1977), 3549.CrossRefGoogle Scholar
19Serrin, J.. Mathematical principles of classical fluid mechanics. In Handbuch der Physik, vol. III/l, ed. Fliigge, S (Berlin: Springer, 1959w).Google Scholar