No CrossRef data available.
Article contents
Harmonic morphisms as a variational problem
Published online by Cambridge University Press: 14 November 2011
Abstract
In this note, we establish a variational setting for harmonic morphisms for target spaces of any dimension. We then extend this result to horizontally weakly conformal p-harmonic maps, such maps being p-harmonic morphisms.
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 129 , Issue 2 , 1999 , pp. 385 - 393
- Copyright
- Copyright © Royal Society of Edinburgh 1999
References
1Baird, P. and Eells, J.. A conservation law for harmonic maps. In Geometry Symp., Utrecht 1980 (ed. Looijenga, E., Siersma, D. and Takens, F.), pp. 1–25. Lecture Notes in Mathematics, vol. 894 (Springer, 1981).CrossRefGoogle Scholar
2Baird, P. and Wood, J. C.. Harmonic morphisms between Riemannian manifolds. (In preparation.)Google Scholar
3Eells, J.. On the geometry of function spaces. In Int. Symp. in Algebraic Topology, pp. 303–308 (Universidad Nacional Aotonoma de Mexico and UNESCO, 1958).Google Scholar
4Eells, J. and Sampson, J. H.. Energie et déformations en géométrie différentielle. Ann. Inst. Fourier (Grenoble) 14 (1964), 61–69.CrossRefGoogle Scholar
5Freed, D. S. and Groisser, D.. The basic geometry of the manifold of Riemannian metrics and its quotient by the diffeomorphism group. Michigan Math. J., 36(3) (1989), 323–344.CrossRefGoogle Scholar
6Fuglede, B.. Harmonic morphisms between Riemannian manifolds. Ann. Inst. Fourier (Grenoble) 28 (1978), 107–144.CrossRefGoogle Scholar
7Gil-Medrano, O. and Michor, P. W.. The Riemannian manifold of all Riemannian metrics. Q. J. Math. Oxford 42(2) (1991), 183–202.CrossRefGoogle Scholar
8Ishihara, T.. A mapping of Riemannian manifolds which preserves harmonic functions. J. Math. Kyoto Univ. 19 (1979), 215–229.Google Scholar
9Michor, P. W.. Manifolds of differentiable mappings. Shiva Mathematics Series, vol. 3 (Orpington, Kent, UK: Shiva, 1980).Google Scholar
10Sanini, A.. Applicazioni tra varietà riemanniane con energia critica rispetto a deformazioni di metriche. Rend. Mat. 3 (1983), 53–63.Google Scholar
11Sanini, A.. Conformal variational problems. Rend. Circ. Mat. Palermo 41 (1992), 165–184.CrossRefGoogle Scholar
12Uhlenbeck, K.. Minimal spheres and other conformal variational problems. In Seminar on minimal submanifolds (ed. Bombieri, E.). Ann. Math. Stud., vol. 103, pp. 169–176 (Princeton University Press, 1983).Google Scholar
13Wood, J. C.. Harmonic morphisms between Riemannian manifolds. In Geometry and global analysis (ed. Kotake, T., Nishikawa, S. and Schoen, R.), pp. 413–422 (Sendai: Tôhoku University, 1993).Google Scholar