Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T14:14:30.540Z Has data issue: false hasContentIssue false

Harmonic morphisms as a variational problem

Published online by Cambridge University Press:  14 November 2011

E. Loubeau
Affiliation:
Université de Bretagne Occidental, UFR Sciences et Techniques, Departement de Mathematiques, 6, avenue Victor Le Gorgeu, BP 809, 29285 Brest Cedex, France (loubeau@univ-brest.fr)

Abstract

In this note, we establish a variational setting for harmonic morphisms for target spaces of any dimension. We then extend this result to horizontally weakly conformal p-harmonic maps, such maps being p-harmonic morphisms.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Baird, P. and Eells, J.. A conservation law for harmonic maps. In Geometry Symp., Utrecht 1980 (ed. Looijenga, E., Siersma, D. and Takens, F.), pp. 125. Lecture Notes in Mathematics, vol. 894 (Springer, 1981).CrossRefGoogle Scholar
2Baird, P. and Wood, J. C.. Harmonic morphisms between Riemannian manifolds. (In preparation.)Google Scholar
3Eells, J.. On the geometry of function spaces. In Int. Symp. in Algebraic Topology, pp. 303308 (Universidad Nacional Aotonoma de Mexico and UNESCO, 1958).Google Scholar
4Eells, J. and Sampson, J. H.. Energie et déformations en géométrie différentielle. Ann. Inst. Fourier (Grenoble) 14 (1964), 6169.CrossRefGoogle Scholar
5Freed, D. S. and Groisser, D.. The basic geometry of the manifold of Riemannian metrics and its quotient by the diffeomorphism group. Michigan Math. J., 36(3) (1989), 323344.CrossRefGoogle Scholar
6Fuglede, B.. Harmonic morphisms between Riemannian manifolds. Ann. Inst. Fourier (Grenoble) 28 (1978), 107144.CrossRefGoogle Scholar
7Gil-Medrano, O. and Michor, P. W.. The Riemannian manifold of all Riemannian metrics. Q. J. Math. Oxford 42(2) (1991), 183202.CrossRefGoogle Scholar
8Ishihara, T.. A mapping of Riemannian manifolds which preserves harmonic functions. J. Math. Kyoto Univ. 19 (1979), 215229.Google Scholar
9Michor, P. W.. Manifolds of differentiable mappings. Shiva Mathematics Series, vol. 3 (Orpington, Kent, UK: Shiva, 1980).Google Scholar
10Sanini, A.. Applicazioni tra varietà riemanniane con energia critica rispetto a deformazioni di metriche. Rend. Mat. 3 (1983), 5363.Google Scholar
11Sanini, A.. Conformal variational problems. Rend. Circ. Mat. Palermo 41 (1992), 165184.CrossRefGoogle Scholar
12Uhlenbeck, K.. Minimal spheres and other conformal variational problems. In Seminar on minimal submanifolds (ed. Bombieri, E.). Ann. Math. Stud., vol. 103, pp. 169176 (Princeton University Press, 1983).Google Scholar
13Wood, J. C.. Harmonic morphisms between Riemannian manifolds. In Geometry and global analysis (ed. Kotake, T., Nishikawa, S. and Schoen, R.), pp. 413422 (Sendai: Tôhoku University, 1993).Google Scholar