No CrossRef data available.
Article contents
On the boundary regularity of phase-fields for Willmore's energy
Part of:
Manifolds
Miscellaneous topics in calculus of variations and optimal control
Elliptic equations and systems
Published online by Cambridge University Press: 27 December 2018
Abstract
We demonstrate that Radon measures which arise as the limit of the Modica-Mortola measures associated with phase-fields with uniformly bounded diffuse area and Willmore energy may be singular at the boundary of a domain and discuss implications for practical applications. We furthermore give partial regularity results for the phase-fields uε at the boundary in terms of boundary conditions and counterexamples without boundary conditions.
MSC classification
- Type
- Research Article
- Information
- Proceedings of the Royal Society of Edinburgh Section A: Mathematics , Volume 149 , Issue 4 , August 2019 , pp. 1017 - 1035
- Copyright
- Copyright © Royal Society of Edinburgh 2018
References
1Alessandroni, R. and Kuwert, E. Local solutions to a free boundary problem for the Willmore functional. Calc. Var. PDE 55 (2016), Article:24.Google Scholar
2Bellettini, G. and Paolini, M. Approssimazione variazionale di funzionali con curvatura. Seminario di Analisi Matematica, Dipartimento di Matematica dell'Università di Bologna. (1993).Google Scholar
3Bretin, E., Masnou, S. and Oudet, E. Phase-field approximations of the Willmore functional and flow. Numerische Mathematik 131 (2015), 115–171.Google Scholar
4Brezis, H. Functional analysis, Sobolev spaces and partial differential equations (New York: Universitext. Springer, 2011).Google Scholar
5De Giorgi, E. Some remarks on Γ-convergence and least squares method. In Composite media and homogenization theory (Trieste, 1990),pp. 135–142 (Boston, MA, Boston, MA: Birkhäuser Boston, 1991).Google Scholar
6Dondl, P. W. and Wojtowytsch, S. Uniform convergence of phase-fields for Willmore's energy. Calc. Var. PDE 56 (2017).Google Scholar
7Dondl, P. W., Lemenant, A. and Wojtowytsch, S. Phase field models for thin elastic structures with topological constraint. Arch. Ration. Mech. Anal. 223 (2017), 693–736.Google Scholar
8Gilbarg, D. and Trudinger, N. S. Elliptic partial differential equations of second order, volume 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edn (Berlin: Springer-Verlag, 1983).Google Scholar
9Modica, L. The gradient theory of phase transitions and the minimal interface criterion. Arch Ration Mech Anal 98 (1987), 123–142.Google Scholar
10Modica, L. and Mortola, S. Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. B (5) 14 (1977), 285–299.Google Scholar
11Nezza, E. D., Palatucci, G. and Valdinoci, E. Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012), 521–573, 04.Google Scholar
12Röger, M. and Schätzle, R. On a modified conjecture of De Giorgi. Math. Z. 254 (2006), 675–714.Google Scholar
13Savin, O. and Valdinoci, E.. Γ-convergence for nonlocal phase transitions. Ann. Inst. H. Poincaré. Anal. Non Linéaire, 29 (2012), 479–500.Google Scholar