Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T06:07:57.101Z Has data issue: false hasContentIssue false

Optimal lower bounds for eigenvalues of linear and nonlinear Neumann problems

Published online by Cambridge University Press:  30 January 2015

Barbara Brandolini
Affiliation:
Dipartimento di Matematica e Applicazioni ‘R. Caccioppoli’, Università degli Studi di Napoli ‘Federico II’, Complesso Monte S. Angelo, via Cintia, 80126 Napoli, Italy, (brandolini@unina.it; francesco.chiacchio@unina.it; cristina@unina.it)
Francesco Chiacchio
Affiliation:
Dipartimento di Matematica e Applicazioni ‘R. Caccioppoli’, Università degli Studi di Napoli ‘Federico II’, Complesso Monte S. Angelo, via Cintia, 80126 Napoli, Italy, (brandolini@unina.it; francesco.chiacchio@unina.it; cristina@unina.it)
Cristina Trombetti
Affiliation:
Dipartimento di Matematica e Applicazioni ‘R. Caccioppoli’, Università degli Studi di Napoli ‘Federico II’, Complesso Monte S. Angelo, via Cintia, 80126 Napoli, Italy, (brandolini@unina.it; francesco.chiacchio@unina.it; cristina@unina.it)

Abstract

In this paper we prove a sharp lower bound for the first non-trivial Neumann eigenvalue μ1(Ω) for the p-Laplace operator (p > 1) in a Lipschitz bounded domain Ω in ℝn. Our estimate does not require any convexity assumption on Ω and it involves the best isoperimetric constant relative to Ω. In a suitable class of convex planar domains, our bound turns out to be better than the one provided by the Payne—Weinberger inequality.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)