Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T07:58:34.031Z Has data issue: false hasContentIssue false

XXI.—A New Approach to the Statistical Thermodynamics of Liquids

Published online by Cambridge University Press:  14 February 2012

R. Fürth
Affiliation:
Formerly Birkbeck College, University of London

Extract

An attempt is made to develop the statistical mechanics of the liquid state based not on the usual concept of a “radial distribution function” but on that of a “next neighbour distribution function” which is closely linked up with Bernal's ideas on the characteristic features of liquid structure. Making certain simplifying assumptions it is indeed possible to construct a partition function for an atomic liquid in this way and from this to derive the thermodynamic properties of the system according to the principles of classical statistical mechanics. It is shown that the free energy, the equation of state, the specific heat and entropy as obtained from the theory are consistent with the expected behaviour of such liquids. It is further shown that the computed next neighbour distribution function for close packing is in good agreement with the one derived empirically from a model by Bernal and Mason.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Bernal, J. D., 1937. Trans. Faraday Soc., 33, 27.CrossRefGoogle Scholar
Bernal, J. D., 1959. Nature, Lond., 183, 141.CrossRefGoogle Scholar
Bernal, J. D. 1960. Nature, Lond., 185, 68.CrossRefGoogle Scholar
Bernal, J. D., 1964. Proc. Roy. Soc, A, 280, 299.Google Scholar
Bernal, J. D., and Mason, J., 1960. Nature, Lond., 188, 910.CrossRefGoogle Scholar
Born, M., 1939. J. Chem. Phys., 7, 591.CrossRefGoogle Scholar
Born, M., and Green, H. S., 1946. Proc. Roy. Soc, A, 188, 10.Google Scholar
Born, M., and Green, H. S., 1949. A General Kinetic Theory of Liquids. (C.U.P.)Google Scholar
Born, M., and Green, H. S., 1947. Nature, Lond., 159, 738.CrossRefGoogle Scholar
Born, M., and Huang, K., 1954. Dynamic Theory of Crystal Lattices. Oxford: Clarendon Press.Google Scholar
Eyring, H., 1939. J. Chem. Phys., 7, 391.CrossRefGoogle Scholar
Frenkel, J., 1939. J. Chem. Phys., 7, 538.CrossRefGoogle Scholar
Frenkel, J., 1946. Kinetic Theory of Liquids. Oxford: Clarendon Press.Google Scholar
Fürth, R., 1940. Proc. Phys. Soc Lond., 52, 768.CrossRefGoogle Scholar
Fürth, R., 1941a. Proc. Camb. Phil. Soc, 37 34.CrossRefGoogle Scholar
Fürth, R. 1941b. Proc Camb. Phil. Soc, 37, 252, 276, 281.CrossRefGoogle Scholar
Fürth, R., 1947. Nature, Lond., 159, 738.Google Scholar
Fürth, R., 1949. Sci. Progr., 37, 202.Google Scholar
Fürth, R., Ornstein, L. S., and Milatz, J. M. W., 1939. Proc. Acad. Sci. Amst., 42, 107.Google Scholar
Furukawa, K., 1959. Nature, Lond., 184, 1209.CrossRefGoogle Scholar
Furukawa, K., 1962. Rep. Progr. Phys., 25, 395.CrossRefGoogle Scholar
Gingrich, N. S., 1943. Rev. Mod. Phys., 15, 90.CrossRefGoogle Scholar
Green, H. S., 1960. “The Structure of Liquids,” Encycl. Phys., 10.CrossRefGoogle Scholar
Grüneisen, E., 1912. Ann. Phys. Lpz., 39,25.Google Scholar
Jones, G. O., and Walker, P. A., 1956. Proc Phys. Soc. Lond. B, 69, 1348.CrossRefGoogle Scholar
Kirkwood, J. G., 1935. J. Chem. Phys., 3, 300.CrossRefGoogle Scholar
Kirkwood, J. G., 1939. J. Chem. Phys., 7, 919.CrossRefGoogle Scholar
Kirkwood, J. G., 1946. J. Chem. Phys., 14, 180.CrossRefGoogle Scholar
Kirkwood, J. G., Buff, F. P., and Green, M. S., 1950. J. Chem. Phys., 18, 901.CrossRefGoogle Scholar
Peierls, R. E., 1955. Quantum Theory of Solids. Oxford: Clarendon Press.Google Scholar
Scott, G. D., 1960. Nature, Lond., 188, 908.CrossRefGoogle Scholar
Scott, G. D., 1962. Nature, Lond., 194, 956.CrossRefGoogle Scholar
Yvon, J., 1935. Actualités Sci., 203.Google Scholar