Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T13:26:23.278Z Has data issue: false hasContentIssue false

An exploration of gender and prolonged grief symptoms using network analysis

Published online by Cambridge University Press:  10 September 2021

F. Maccallum*
Affiliation:
The University of Queensland, St Lucia, QLD 4072, Australia
M. Lundorff
Affiliation:
Unit for Bereavement Research, Department of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark Unit for Psycho-Oncology and Health Psychology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark Department of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark
M. Johannsen
Affiliation:
Unit for Bereavement Research, Department of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark Unit for Psycho-Oncology and Health Psychology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark Department of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark
I. Farver-Vestergaard
Affiliation:
Department of Medicine, Vejle Hospital, Vejle, Denmark
M. O'Connor
Affiliation:
Unit for Bereavement Research, Department of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark Unit for Psycho-Oncology and Health Psychology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark Department of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark The Danish National Centre for Grief, Copenhagen, Denmark
*
Author for correspondence: F. Maccallum, E-mail: f.maccallum@uq.edu.au

Abstract

Background

Gender has been proposed as a potentially important predictor of bereavement outcomes. The majority of research in the field has explored this issue by examining gender differences in global grief severity. Findings have been mixed. In this study, we explore potential gender differences in grief using network analysis. This approach examines how individual symptoms relate to and reinforce each other, and so offers potential to shed light on novel aspects of grief expression across genders.

Method

Graphical lasso networks were constructed using self-report data from 839 spousally bereaved older participants (584 female, 255 male) collected at 2- and 11- months post-bereavement. Edge strength, node strength and global network strength were compared to identify similarities and differences between gender networks across time.

Results

At both time points, the strongest connection for both genders was from yearning to pangs of grief. Yearning, pangs of grief, acceptance, bitterness and shock were prominent nodes at time 1. Numbness and meaninglessness emerged as prominent nodes at time 2. Males and females differed in the relative importance of shock at time 1, and the female network had greater overall strength than the male network at time 2.

Conclusions

This study identified many similarities and few differences in the relationships between prolonged grief symptoms for males and females. Findings suggest that future studies should examine alternate sources of variation in grief outcomes. Limitations are discussed.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bierhals, A. J., Prigerson, H. G., Fasiczka, A., Frank, E., Miller, M., & Reynolds, C. F. III (1995). Gender differences in complicated grief among the elderly. Omega: Journal of Death and Dying, 32, 303317.CrossRefGoogle Scholar
Boelen, P. A, & Van den Bout, J. (2002–2003). Gender differences in traumatic grief symptom severity after the loss of a spouse. Omega: Journal of Death and Dying, 46, 183198.CrossRefGoogle Scholar
Boelen, P. A., van den Hout, M. A., & van den Bout, J. (2006). A cognitive-behavioral conceptualization of complicated grief. Clinical Psychology: Science and Practice, 13, 109128. doi:10.1111/j.1468-2850.2006.00013.xGoogle Scholar
Bonanno, G. A., & Malgaroli, M. (2020). Trajectories of grief: Comparing symptoms from the DSM-5 and ICD-11 diagnoses. Depression and Anxiety, 37, 1725. doi:10.1002/da.22902CrossRefGoogle ScholarPubMed
Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16, 513. doi:10.1002/wps.20375CrossRefGoogle ScholarPubMed
Borsboom, D., & Cramer, A. O. J. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91121, doi:10.1146/annurev-clinpsy-050212-185608CrossRefGoogle Scholar
Bryant, R. A., Kenny, L., Joscelyne, A., Rawson, N., Maccallum, F., Cahill, C., … Nickerson, A. (2014). Treating prolonged grief disorder: A randomized controlled trial. JAMA: Psychiatry, 71, 13321339. doi:10.1001/jamapsychiatry.2014.1600Google Scholar
Burke, L. A., & Neimeyer, R. A. (2013). Prospective risk factors for complicated grief: A review of the empirical literature. In Stroebe, M., Schut, H., & van den Bout, J. (Eds.), Complicated grief: Scientific foundations for health care professionals (pp. 145161). London: Routledge.Google Scholar
Costantini, G., & Epskamp, S. (2017). EstimateGroupNetwork: Perform the joint graphical lasso and selects tuning parameters. R package version 0.1, 2, 2017.Google Scholar
Costantini, G., Richetin, J., Preti, E., Casini, E., Epskamp, S., & Perugini, M. (2019). Stability and variability of personality networks. A tutorial on recent developments in network psychometrics. Personality and Individual Differences, 136, 6878. https://doi.org/10.1016/j.paid.2017.06.011CrossRefGoogle Scholar
Danaher, P., Wang, P., & Witten, D. M. (2014). The joint graphical lasso for inverse covariance estimation across multiple classes. Journal of the Royal Statistical Society: Series B. Statistical Methodology, 76, 373397. doi:10.1111/rssb.12033CrossRefGoogle ScholarPubMed
Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50, 195212. doi:10.3758/s13428-017-0862-1CrossRefGoogle ScholarPubMed
Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48, 118. Retrieved from Go to ISI; doi://WOS:000305117400001CrossRefGoogle Scholar
Fried, E. I., Eidhof, M. B., Palic, S., Costantini, G., Huisman-van Dijk, H. M., Bockting, C. L. H., … Karstoft, K.-I. (2018). Replicability and generalizability of posttraumatic stress disorder (PTSD) networks: A cross-cultural multisite study of PTSD symptoms in four trauma patient samples. Clinical Psychological Science, 6, 335351. doi:10.1177/2167702617745092CrossRefGoogle ScholarPubMed
Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9, 432441. https://doi.org/10.1093/biostatistics/kxm045CrossRefGoogle ScholarPubMed
Harris, P. A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. G. (2009). Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. Journal of Biomedical Informatics, 42(2), 377381. doi:10.1016/j.jbi.2008.08.010CrossRefGoogle ScholarPubMed
Isvoranu, A., & Epskamp, S. (2021). Continuous and Ordered Categorical Data in Network Psychometrics: Which Estimation Method to Choose? Deriving Guidelines for Applied Researchers. https://doi.org/10.31234/osf.io/mbycn.CrossRefGoogle Scholar
Knefel, M., Lueger-Schuster, B., Bisson, J., Karatzias, T., Kazlauskas, E., & Roberts, N. P. (2020). A cross-cultural comparison of ICD-11 complex posttraumatic stress disorder symptom networks in Austria, the United Kingdom, and Lithuania. Journal of Traumatic Stress, 33, 4151. doi:10.1002/jts.22361CrossRefGoogle ScholarPubMed
Lobb, E. A., Kristjanson, L. J., Aoun, S. M., Monterosso, L., Halkett, G. K. B., & Davies, A. (2010). Predictors of complicated grief: A systematic review of empirical studies. Death Studies, 34, 673698. doi:10.1080/07481187.2010.496686CrossRefGoogle ScholarPubMed
Lundorff, M., Bonanno, G. A., Johannsen, M., & O'Connor, M. (2020). Are there gender differences in prolonged grief trajectories? A registry-sampled cohort study. Journal of Psychiatric Research, 129, 168175. https://doi.org/10.1016/j.jpsychires.2020.06.030CrossRefGoogle ScholarPubMed
Maccallum, F., & Bryant, R. A. (2013). A cognitive attachment model of prolonged grief: Integrating attachments, memory, and identity. Clinical Psychology Review, 33, 713727. doi:10.1016/j.cpr.2013.05.001CrossRefGoogle ScholarPubMed
Maccallum, F., & Bryant, R. A. (2018). Prolonged grief and attachment security: A latent class analysis. Psychiatry Research, 268, 297302.CrossRefGoogle ScholarPubMed
Maccallum, F., & Bryant, R. A. (2019). A network approach to understanding quality of life impairments in prolonged grief disorder. Journal of Traumatic Stress, 33, 106115. doi:10.1002/jts.22383CrossRefGoogle ScholarPubMed
Maccallum, F., Galatzer-Levy, I. R., & Bonanno, G. A. (2015). Trajectories of depression following spousal and child bereavement: A comparison of the heterogeneity in outcomes. Journal of Psychiatric Research, 69, 7279. doi:10.1016/j.jpsychires.2015.07.017CrossRefGoogle ScholarPubMed
Maccallum, F., Malgaroli, M., & Bonanno, G. A. (2017). Networks of loss: Relationships among symptoms of prolonged grief following spousal and parental loss. Journal of Abnormal Psychology, 126, 652662. doi:10.1037/abn0000287CrossRefGoogle ScholarPubMed
Malgaroli, M., Maccallum, F., & Bonanno, G. A. (2018). Symptoms of persistent complex bereavement disorder, depression, and PTSD in a conjugally bereaved sample: A network analysis. Psychological Medicine, 48, 24392448. doi:10.1017/S0033291718001769CrossRefGoogle Scholar
McNally, R. J., Robinaugh, D. J., Wu, G. W. Y., Wang, L., Deserno, M. K., & Borsboom, D. (2015). Mental disorders as causal systems: A network approach to posttraumatic stress disorder. Clinical Psychological Science, 3, 836849. doi:10.1177/2167702614553230CrossRefGoogle Scholar
Neimeyer, R. A. (2019). Meaning reconstruction in bereavement: Development of a research program. Death Studies, 43, 7991. doi:10.1080/07481187.2018.1456620CrossRefGoogle ScholarPubMed
Prigerson, H. G., Horowitz, M. J., Jacobs, S. C., Parkes, C. M., Aslan, M., Goodkin, K., … Maciejewski, P. K. (2009). Prolonged grief disorder: Psychometric validation of criteria proposed for DSM-V and ICD-11. PLoS Medicine, 6, e1000121. doi:10.1371/journal.pmed.1000121CrossRefGoogle ScholarPubMed
Prigerson, H. G., Maciejewski, P. K., Reynolds, C. F. III, Bierhals, A. J., Newsom, J. T., Fasiczka, A., … Miller, M. (1995). Inventory of complicated grief: A scale to measure maladaptive symptoms of loss. Psychiatry Research, 59, 6579. doi:10.1016/0165-1781(95)02757-2CrossRefGoogle ScholarPubMed
R Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/.Google Scholar
Robinaugh, D. J., LeBlanc, N. J., Vuletich, H. A., & McNally, R. J. (2014). Network analysis of persistent complex bereavement disorder in conjugally bereaved adults. Journal of Abnormal Psychology, 123, 510522. doi:10.1037/abn0000002CrossRefGoogle ScholarPubMed
Schut, H. A. W., Stroebe, M. S., van den Bout, J., & de Keijser, J. (1997). Intervention for the bereaved: Gender differences in the efficacy of two counselling programmes. British Journal of Clinical Psychology, 36, 6372. doi:10.1111/j.2044-8260.1997.tb01231.xCrossRefGoogle ScholarPubMed
Shear, M. K., Reynolds, C. F., Simon, N. M., Zisook, S., Wang, Y. J., Mauro, C., … Skritskaya, N. (2016). Optimizing treatment of complicated grief. A randomized clinical trial. JAMA Psychiatry, 73, 685694. doi:10.1001/jamapsychiatry.2016.0892CrossRefGoogle ScholarPubMed
Stroebe, M. S., & Schut, H. (1999). The dual process model of coping with bereavement: Rationale and description. Death Studies, 23, 197224. doi:10.1080/074811899201046Google ScholarPubMed
Stroebe, M. S., Schut, H., & Boerner, K. (2010). Continuing bonds in adaptation to bereavement: Toward theoretical integration. Clinical Psychology Review, 30, 259268. doi:10.1016/j.cpr.2009.11.007CrossRefGoogle ScholarPubMed
Stroebe, M. S., & Stroebe, W. (1989). Who participates in bereavement research – A review and empirical study. Omega-Journal of Death and Dying, 20, 129. doi:10.2190/c3je-c9l1-5r91-dwduCrossRefGoogle Scholar
Stroebe, M. S., Stroebe, W., & Schut, H. (2001). Gender differences in adjustment to bereavement: An empirical and theoretical review. Review of General Psychology, 5, 6283. doi:10.1037//1089-2680.5.1.62CrossRefGoogle Scholar
van Borkulo, C., Boschloo, L., Borsboom, D., Penninx, B., Waldorp, L. J., & Schoevers, R. A. (2015). Association of symptom network structure with the course of longitudinal depression. JAMA Psychiatry, 72, 12191226. doi:10.1001/jamapsychiatry.2015.2079CrossRefGoogle Scholar
World Health Organization. (2018). International classification of diseases for mortality and morbidity statistics, 11th Revision: World Health Organisation. Retrieved from https://icd.who.int/browse11/l-m/enGoogle Scholar
Supplementary material: File

Maccallum et al. supplementary material

Figures S1-S17 and Table 1

Download Maccallum et al. supplementary material(File)
File 428.4 KB