Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T05:46:06.066Z Has data issue: false hasContentIssue false

A joint study of whole exome sequencing and structural MRI analysis in major depressive disorder

Published online by Cambridge University Press:  06 February 2019

Yamin Zhang
Affiliation:
Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
Mingli Li
Affiliation:
Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
Qiang Wang
Affiliation:
Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
Jacob Shujui Hsu
Affiliation:
Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong, China State Key Laboratory for Cognitive and Brain Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
Wei Deng
Affiliation:
Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
Xiaohong Ma
Affiliation:
Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
Peiyan Ni
Affiliation:
Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
Liansheng Zhao
Affiliation:
Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
Yang Tian
Affiliation:
Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
Pak Chung Sham*
Affiliation:
Department of Psychiatry, The University of Hong Kong, Pokfulam, Hong Kong, China State Key Laboratory for Cognitive and Brain Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
Tao Li*
Affiliation:
Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
*
Author for correspondence: Tao Li; Pak Chung Sham, E-mail: litaohx@scu.edu.cn; pcsham@hku.hk
Author for correspondence: Tao Li; Pak Chung Sham, E-mail: litaohx@scu.edu.cn; pcsham@hku.hk

Abstract

Background

Major depressive disorder (MDD) is a leading cause of disability worldwide and influenced by both environmental and genetic factors. Genetic studies of MDD have focused on common variants and have been constrained by the heterogeneity of clinical symptoms.

Methods

We sequenced the exome of 77 cases and 245 controls of Han Chinese ancestry and scanned their brain. Burden tests of rare variants were performed first to explore the association between genes/pathways and MDD. Secondly, parallel Independent Component Analysis was conducted to investigate genetic underpinnings of gray matter volume (GMV) changes of MDD.

Results

Two genes (CSMD1, p = 5.32×10−6; CNTNAP5, p = 1.32×10−6) and one pathway (Neuroactive Ligand Receptor Interactive, p = 1.29×10−5) achieved significance in burden test. In addition, we identified one pair of imaging-genetic components of significant correlation (r = 0.38, p = 9.92×10−6). The imaging component reflected decreased GMV in cases and correlated with intelligence quotient (IQ). IQ mediated the effects of GMV on MDD. The genetic component enriched in two gene sets, namely Singling by G-protein coupled receptors [false discovery rate (FDR) q = 3.23×10−4) and Alzheimer Disease Up (FDR q = 6.12×10−4).

Conclusions

Both rare variants analysis and imaging–genetic analysis found evidence corresponding with the neuroinflammation and synaptic plasticity hypotheses of MDD. The mediation of IQ indicates that genetic component may act on MDD through GMV alteration and cognitive impairment.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adkins, DE, Khachane, AN, Mcclay, JL, Aberg, K, Bukszar, J, Sullivan, PF and van den Oord, EJ (2012) SNP-based analysis of neuroactive ligand-receptor interaction pathways implicates PGE2 as a novel mediator of antipsychotic treatment response: data from the CATIE study. Schizophrenia Research 135, 200201.CrossRefGoogle ScholarPubMed
Afkhami-Goli, A, Noorbakhsh, F, Keller, AJ, Vergnolle, N, Westaway, D, Jhamandas, JH, Andrade-Gordon, P, Hollenberg, MD, Arab, H, Dyck, RH and Power, C (2007) Proteinase-activated receptor-2 exerts protective and pathogenic cell type-specific effects in Alzheimer's disease. Journal of Immunology 179, 54935503.CrossRefGoogle ScholarPubMed
Alemany, S, Ribases, M, Vilor-Tejedor, N, Bustamante, M, Sanchez-Mora, C, Bosch, R, Richarte, V, Cormand, B, Casas, M, Ramos-Quiroga, JA and Sunyer, J (2015) New suggestive genetic loci and biological pathways for attention function in adult attention-deficit/hyperactivity disorder. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics 168, 459470.CrossRefGoogle ScholarPubMed
Amin, N, Belonogova, NM, Jovanova, O, Brouwer, RW, van Rooij, JG, van den Hout, MC, Svishcheva, GR, Kraaij, R, Zorkoltseva, IV, Kirichenko, AV, Hofman, A, Uitterlinden, AG, van Ijcken, WF, Tiemeier, H, Axenovich, TI and van Duijn, CM (2017 a) Nonsynonymous variation in NKPD1 increases depressive symptoms in European populations. Biological Psychiatry 81, 702707.CrossRefGoogle ScholarPubMed
Amin, N, Jovanova, O, Adams, HH, Dehghan, A, Kavousi, M, Vernooij, MW, Peeters, RP, de Vrij, FM, van der Lee, SJ, van Rooij, JG, van Leeuwen, EM, Chaker, L, Demirkan, A, Hofman, A, Brouwer, RW, Kraaij, R, Willems, VDK, Hankemeier, T, van Ijcken, WF, Uitterlinden, AG, Niessen, WJ, Franco, OH, Kushner, SA, Ikram, MA, Tiemeier, H and van Duijn, CM (2017 b) Exome-sequencing in a large population-based study reveals a rare Asn396Ser variant in the LIPG gene associated with depressive symptoms. Molecular Psychiatry 22, 634.CrossRefGoogle Scholar
Anderson, BJ (2011) Plasticity of gray matter volume: the cellular and synaptic plasticity that underlies volumetric change. Developmental Psychobiology 53, 456465.CrossRefGoogle ScholarPubMed
Anderson, GR, Galfin, T, Xu, W, Aoto, J, Malenka, RC and Sudhof, TC (2012) Candidate autism gene screen identifies critical role for cell-adhesion molecule CASPR2 in dendritic arborization and spine development. Proceedings of the National Academy of Sciences of the USA 109, 18120–5.CrossRefGoogle ScholarPubMed
Ashburner, J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38, 95113.CrossRefGoogle ScholarPubMed
Aston, C, Jiang, L and Sokolov, BP (2005) Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder. Molecular Psychiatry 10, 309322.CrossRefGoogle ScholarPubMed
Bah, TM, Benderdour, M, Kaloustian, S, Karam, R, Rousseau, G and Godbout, R (2011) Escitalopram reduces circulating pro-inflammatory cytokines and improves depressive behavior without affecting sleep in a rat model of post-cardiac infarct depression. Behavioural Brain Research 225, 243251.CrossRefGoogle Scholar
Baxter, MG (2009) Involvement of medial temporal lobe structures in memory and perception. Neuron 61, 667677.CrossRefGoogle ScholarPubMed
Berk, M, Williams, LJ, Jacka, FN, O'NEIL, A, Pasco, JA, Moylan, S, Allen, NB, Stuart, AL, Hayley, AC, Byrne, ML and Maes, M (2013) So depression is an inflammatory disease, but where does the inflammation come from? BMC Medicine 11, 200.CrossRefGoogle Scholar
Blalock, EM, Geddes, JW, Chen, KC, Porter, NM, Markesbery, WR and Landfield, PW (2004) Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proceedings of the National Academy of Sciences of the USA 101, 21732178.CrossRefGoogle ScholarPubMed
Boulanger, LM (2009) Immune proteins in brain development and synaptic plasticity. Neuron 64, 93109.CrossRefGoogle ScholarPubMed
Boyle, EA, Li, YI and Pritchard, JK (2017) An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 11771186.CrossRefGoogle ScholarPubMed
Buckner, RL, Andrews-Hanna, JR and Schacter, DL (2008) The brain's default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences 1124, 138.CrossRefGoogle ScholarPubMed
Bulayeva, K, Lencz, T, Glatt, S, Takumi, T, Gurgenova, F, Kawakami, H and Bulayev, O (2012) Mapping genes related to early onset major depressive disorder in Dagestan genetic isolates. Turkish Journal of Psychiatry 23, 161170.Google ScholarPubMed
Burkhardt, C, Muller, M, Badde, A, Garner, CC, Gundelfinger, ED and Puschel, AW (2005) Semaphorin 4B interacts with the post-synaptic density protein PSD-95/SAP90 and is recruited to synapses through a C-terminal PDZ-binding motif. FEBS Letters 579, 38213828.CrossRefGoogle ScholarPubMed
Cao, X, Li, LP, Wang, Q, Wu, Q, Hu, HH, Zhang, M, Fang, YY, Zhang, J, Li, SJ, Xiong, WC, Yan, HC, Gao, YB, Liu, JH, Li, XW, Sun, LR, Zeng, YN, Zhu, XH and Gao, TM (2013) Astrocyte-derived ATP modulates depressive-like behaviors. Nature Medicine 19, 773777.CrossRefGoogle ScholarPubMed
Cazareth, J, Guyon, A, Heurteaux, C, Chabry, J and Petit-Paitel, A (2014) Molecular and cellular neuroinflammatory status of mouse brain after systemic lipopolysaccharide challenge: importance of CCR2/CCL2 signaling. Journal of Neuroinflammation 11, 132.CrossRefGoogle Scholar
Chabry, J, Nicolas, S, Cazareth, J, Murris, E, Guyon, A, Glaichenhaus, N, Heurteaux, C and Petit-Paitel, A (2015) Enriched environment decreases microglia and brain macrophages inflammatory phenotypes through adiponectin-dependent mechanisms: relevance to depressive-like behavior. Brain, Behavior, and Immunity 50, 275287.CrossRefGoogle ScholarPubMed
Chen, J, Calhoun, VD and Liu, J (2012 a) ICA order selection based on consistency: application to genotype data. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2012, 360363.Google Scholar
Chen, J, Calhoun, VD, Pearlson, GD, Ehrlich, S, Turner, JA, Ho, BC, Wassink, TH, Michael, AM and Liu, J (2012 b) Multifaceted genomic risk for brain function in schizophrenia. Neuroimage 61, 866875.CrossRefGoogle Scholar
Cohen-Woods, S, Craig, IW and Mcguffin, P (2013) The current state of play on the molecular genetics of depression. Psychological Medicine 43, 673687.CrossRefGoogle Scholar
CONVERGE Consortium (2015) Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 523, 588591.CrossRefGoogle Scholar
Cusi, AM, Nazarov, A, Holshausen, K, Macqueen, GM and Mckinnon, MC (2012) Systematic review of the neural basis of social cognition in patients with mood disorders. Journal of Psychiatry Neuroscience 37, 154169.CrossRefGoogle ScholarPubMed
De Felipe, C, Herrero, JF, O'BRIEN, JA, Palmer, JA, Doyle, CA, Smith, AJ, Laird, JM, Belmonte, C, Cervero, F and Hunt, SP (1998) Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature 392, 394397.CrossRefGoogle ScholarPubMed
Djurovic, S, Gustafsson, O, Mattingsdal, M, Athanasiu, L, Bjella, T, Tesli, M, Agartz, I, Lorentzen, S, Melle, I, Morken, G and Andreassen, OA (2010) A genome-wide association study of bipolar disorder in Norwegian individuals, followed by replication in Icelandic sample. Journal of Affective Disorder 126, 312316.CrossRefGoogle ScholarPubMed
Du, MY, Wu, QZ, Yue, Q, Li, J, Liao, Y, Kuang, WH, Huang, XQ, Chan, RC, Mechelli, A and Gong, QY (2012) Voxelwise meta-analysis of gray matter reduction in major depressive disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry 36, 1116.CrossRefGoogle ScholarPubMed
Elliott, LT, Sharp, K, Alfaro-Almagro, F, Shi, S, Miller, KL, Douaud, G, Marchini, J and Smith, SM (2018) Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 562, 210216.CrossRefGoogle ScholarPubMed
First, M, Spitzer, R, Williams, J and Gibbons, M (1995a) Structured clinical interview for DSM-IV-Patient version. (Biometrics Research Department, New York State Psychiatric Institute).Google Scholar
First, M, Spitzer, R, Williams, J and Gibbons, M (1995b) Structured clinical interview for DSM-IV-non-patient edition (SCID-NP, Version). (American Psychological Association).Google Scholar
Gaynor, SM, Schwartz, J and Lin, X (2019) Mediation analysis for common binary outcomes. Statistics in Medicine 38, 512529.CrossRefGoogle ScholarPubMed
GBD 2015 DISEASE AND INJURY INCIDENCE AND PREVALENCE COLLABORATORS (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet 388, 15451602.CrossRefGoogle Scholar
Geracioti, TJ, Carpenter, LL, Owens, MJ, Baker, DG, Ekhator, NN, Horn, PS, Strawn, JR, Sanacora, G, Kinkead, B, Price, LH and Nemeroff, CB (2006) Elevated cerebrospinal fluid substance p concentrations in posttraumatic stress disorder and major depression. American Journal of Psychiatry 163, 637643.CrossRefGoogle ScholarPubMed
Gibson, G (2012) Rare and common variants: twenty arguments. Nature Review Genetics 13, 135145.CrossRefGoogle ScholarPubMed
Gottesman, II and Gould, TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. American Journal of Psychiatry 160, 636645.CrossRefGoogle ScholarPubMed
Gray, AL, Hyde, TM, Deep-Soboslay, A, Kleinman, JE and Sodhi, MS (2015) Sex differences in glutamate receptor gene expression in major depression and suicide. Molecular Psychiatry 20, 1139.CrossRefGoogle ScholarPubMed
Guo, W, Liu, F, Xiao, C, Zhang, Z, Liu, J, Yu, M, Zhang, J and Zhao, J (2015) Decreased insular connectivity in drug-naive major depressive disorder at rest. Journal of Affective Disorder 179, 3137.CrossRefGoogle ScholarPubMed
Gupta, CN, Chen, J, Liu, J, Damaraju, E, Wright, C, Perrone-Bizzozero, NI, Pearlson, G, Luo, L, Michael, AM, Turner, JA and Calhoun, VD (2015) Genetic markers of white matter integrity in schizophrenia revealed by parallel ICA. Frontiers in Human Neuroscience 9, 100.CrossRefGoogle ScholarPubMed
Hamilton, G, Evans, KL, Macintyre, DJ, Deary, IJ, Dominiczak, A, Smith, BH, Morris, AD, Porteous, DJ and Thomson, PA (2012) Alzheimer's disease risk factor complement receptor 1 is associated with depression. Neuroscience Letters 510, 69.CrossRefGoogle ScholarPubMed
Hart, R and Greaves, DR (2010) Chemerin contributes to inflammation by promoting macrophage adhesion to VCAM-1 and fibronectin through clustering of VLA-4 and VLA-5. Journal of Immunology 185, 37283739.CrossRefGoogle ScholarPubMed
Herbert, J and Lucassen, PJ (2016) Depression as a risk factor for Alzheimer's disease: genes, steroids, cytokines and neurogenesis – what do we need to know? Frontiers in Neuroendocrinology 41, 153171.CrossRefGoogle ScholarPubMed
Hoffman, P, Cox, SR, Dykiert, D, Munoz, MS, Valdes, HM, Bastin, ME, Wardlaw, JM and Deary, IJ (2017) Brain grey and white matter predictors of verbal ability traits in older age: the Lothian Birth Cohort 1936. Neuroimage 156, 394402.CrossRefGoogle ScholarPubMed
Hyde, CL, Nagle, MW, Tian, C, Chen, X, Paciga, SA, Wendland, JR, Tung, JY, Hinds, DA, Perlis, RH and Winslow, AR (2016) Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nature Genetics 48, 10311036.CrossRefGoogle ScholarPubMed
Jagannathan, K, Calhoun, VD, Gelernter, J, Stevens, MC, Liu, J, Bolognani, F, Windemuth, A, Ruano, G, Assaf, M and Pearlson, GD (2010) Genetic associations of brain structural networks in schizophrenia: a preliminary study. Biological Psychiatry 68, 657666.CrossRefGoogle ScholarPubMed
Jansen, AG, Mous, SE, White, T, Posthuma, D and Polderman, TJ (2015) What twin studies tell us about the heritability of brain development, morphology, and function: a review. Neuropsychology Review 25, 2746.CrossRefGoogle ScholarPubMed
Jaracz, J, Gattner, K, Jaracz, K and Gorna, K (2016) Unexplained painful physical symptoms in patients with major depressive disorder: prevalence, pathophysiology and management. CNS Drugs 30, 293304.CrossRefGoogle ScholarPubMed
Ji, W, Li, T, Pan, Y, Tao, H, Ju, K, Wen, Z, Fu, Y, An, Z, Zhao, Q, Wang, T, He, L, Feng, G, Yi, Q and Shi, Y (2013) CNTNAP2 is significantly associated with schizophrenia and major depression in the Han Chinese population. Psychiatry Research 207, 225228.CrossRefGoogle ScholarPubMed
Jun, G, Flickinger, M, Hetrick, KN, Romm, JM, Doheny, KF, Abecasis, GR, Boehnke, M and Kang, HM (2012) Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data. American Journal of Human Genetics 91, 839848.CrossRefGoogle ScholarPubMed
Kaminsky, EB, Kaul, V, Paschall, J, Church, DM, Bunke, B, Kunig, D, Moreno-De-luca, D, Moreno-De-luca, A, Mulle, JG, Warren, ST, Richard, G, Compton, JG, Fuller, AE, Gliem, TJ, Huang, S, Collinson, MN, Beal, SJ, Ackley, T, Pickering, DL, Golden, DM, Aston, E, Whitby, H, Shetty, S, Rossi, MR, Rudd, MK, South, ST, Brothman, AR, Sanger, WG, Iyer, RK, Crolla, JA, Thorland, EC, Aradhya, S, Ledbetter, DH and Martin, CL (2011) An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genetics Medicine 13, 777784.CrossRefGoogle ScholarPubMed
Karayannis, T, Au, E, Patel, JC, Kruglikov, I, Markx, S, Delorme, R, Heron, D, Salomon, D, Glessner, J, Restituito, S, Gordon, A, Rodriguez-Murillo, L, Roy, NC, Gogos, JA, Rudy, B, Rice, ME, Karayiorgou, M, Hakonarson, H, Keren, B, Huguet, G, Bourgeron, T, Hoeffer, C, Tsien, RW, Peles, E and Fishell, G (2014) Cntnap4 differentially contributes to GABAergic and dopaminergic synaptic transmission. Nature 511, 236240.CrossRefGoogle ScholarPubMed
Kelly, MA, Beuckmann, CT, Williams, SC, Sinton, CM, Motoike, T, Richardson, JA, Hammer, RE, Garry, MG and Yanagisawa, M (2005) Neuropeptide B-deficient mice demonstrate hyperalgesia in response to inflammatory pain. Proceedings of the National Academy of Sciences of the USA 102, 99429947.CrossRefGoogle ScholarPubMed
Khadka, S, Pearlson, GD, Calhoun, VD, Liu, J, Gelernter, J, Bessette, KL and Stevens, MC (2016) Multivariate imaging genetics study of MRI gray matter volume and SNPs reveals biological pathways correlated with brain structural differences in attention deficit hyperactivity disorder. Frontiers in Psychiatry 7, 128.CrossRefGoogle ScholarPubMed
Kim, YK and Won, E (2017) The influence of stress on neuroinflammation and alterations in brain structure and function in major depressive disorder. Behavioural Brain Research 329, 611.CrossRefGoogle ScholarPubMed
Kircher, M, Witten, DM, Jain, P, O'ROAK, BJ, Cooper, GM and Shendure, J (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nature Genetics 46, 310315.CrossRefGoogle ScholarPubMed
Kohler, O, Benros, ME, Nordentoft, M, Farkouh, ME, Iyengar, RL, Mors, O and Krogh, J (2014) Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry 71, 13811391.CrossRefGoogle ScholarPubMed
Kong, Y, Liang, X, Liu, L, Zhang, D, Wan, C, Gan, Z and Yuan, L (2015) High throughput sequencing identifies MicroRNAs mediating alpha-synuclein toxicity by targeting neuroactive-ligand receptor interaction pathway in early stage of drosophila Parkinson's disease model. PLoS ONE 10, e0137432.CrossRefGoogle ScholarPubMed
Kraus, DM, Elliott, GS, Chute, H, Horan, T, Pfenninger, KH, Sanford, SD, Foster, S, Scully, S, Welcher, AA and Holers, VM (2006) CSMD1 is a novel multiple domain complement-regulatory protein highly expressed in the central nervous system and epithelial tissues. Journal of Immunology 176, 44194430.CrossRefGoogle ScholarPubMed
Lai, CH (2013) Gray matter volume in major depressive disorder: a meta-analysis of voxel-based morphometry studies. Psychiatry Research 211, 3746.CrossRefGoogle ScholarPubMed
Lee, AC and Rudebeck, SR (2010) Investigating the interaction between spatial perception and working memory in the human medial temporal lobe. Journal of Cognitive Neuroscience 22, 28232835.CrossRefGoogle ScholarPubMed
Cross-Disorder Group of the Psychiatric Genomics Consortium (2013) Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics 45, 984994.CrossRefGoogle Scholar
Lener, MS and Iosifescu, DV (2015) In pursuit of neuroimaging biomarkers to guide treatment selection in major depressive disorder: a review of the literature. Annals of the New York Academy of Sciences 1344, 5065.CrossRefGoogle ScholarPubMed
Leonard, BE (2007) Inflammation, depression and dementia: are they connected? Neurochemical Research 32, 17491756.CrossRefGoogle ScholarPubMed
Levinson, DF, Shi, J, Wang, K, Oh, S, Riley, B, Pulver, AE, Wildenauer, DB, Laurent, C, Mowry, BJ, Gejman, PV, Owen, MJ, Kendler, KS, Nestadt, G, Schwab, SG, Mallet, J, Nertney, D, Sanders, AR, Williams, NM, Wormley, B, Lasseter, VK, Albus, M, Godard-Bauche, S, Alexander, M, Duan, J, O'DONOVAN, MC, Walsh, D, O'NEILL, A, Papadimitriou, GN, Dikeos, D, Maier, W, Lerer, B, Campion, D, Cohen, D, Jay, M, Fanous, A, Eichhammer, P, Silverman, JM, Norton, N, Zhang, N, Hakonarson, H, Gao, C, Citri, A, Hansen, M, Ripke, S, Dudbridge, F and Holmans, PA (2012) Genome-wide association study of multiplex schizophrenia pedigrees. American Journal of Psychiatry 169, 963973.CrossRefGoogle ScholarPubMed
Li, M, Li, J, Li, MJ, Pan, Z, Hsu, JS, Liu, DJ, Zhan, X, Wang, J, Song, Y and Sham, PC (2017) Robust and rapid algorithms facilitate large-scale whole genome sequencing downstream analysis in an integrative framework. Nucleic Acids Research 45, e75.Google Scholar
Liberzon, A, Birger, C, Thorvaldsdottir, H, Ghandi, M, Mesirov, JP and Tamayo, P (2015) The molecular signatures database (MSigDB) hallmark gene set collection. Cell System 1, 417425.CrossRefGoogle ScholarPubMed
Liu, J, Demirci, O and Calhoun, VD (2008) A parallel independent component analysis approach to investigate genomic influence on brain function. IEEE Signal Processing Letters 15, 413416.Google ScholarPubMed
Liu, J, Pearlson, G, Windemuth, A, Ruano, G, Perrone-Bizzozero, NI and Calhoun, V (2009) Combining fMRI and SNP data to investigate connections between brain function and genetics using parallel ICA. Hum Brain Mapping 30, 241255.CrossRefGoogle ScholarPubMed
Marsden, WN (2013) Synaptic plasticity in depression: molecular, cellular and functional correlates. Progress in Neuro-Psychopharmacology & Biological Psychiatry 43, 168184.CrossRefGoogle ScholarPubMed
Matsubara, T, Matsuo, K, Harada, K, Nakano, M, Nakashima, M, Watanuki, T, Egashira, K, Furukawa, M, Matsunaga, N and Watanabe, Y (2016) Distinct and shared endophenotypes of neural substrates in bipolar and major depressive disorders. PLoS ONE 11, e0168493.CrossRefGoogle ScholarPubMed
Mcclay, JL, Adkins, DE, Aberg, K, Stroup, S, Perkins, DO, Vladimirov, VI, Lieberman, JA, Sullivan, PF and van den Oord, EJ (2011) Genome-wide pharmacogenomic analysis of response to treatment with antipsychotics. Molecular Psychiatry 16, 7685.CrossRefGoogle ScholarPubMed
Mckenna, A, Hanna, M, Banks, E, Sivachenko, A, Cibulskis, K, Kernytsky, A, Garimella, K, Altshuler, D, Gabriel, S, Daly, M and Depristo, MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20, 12971303.CrossRefGoogle ScholarPubMed
Meda, SA, Ruano, G, Windemuth, A, O'NEIL, K, Berwise, C, Dunn, SM, Boccaccio, LE, Narayanan, B, Kocherla, M, Sprooten, E, Keshavan, MS, Tamminga, CA, Sweeney, JA, Clementz, BA, Calhoun, VD and Pearlson, GD (2014) Multivariate analysis reveals genetic associations of the resting default mode network in psychotic bipolar disorder and schizophrenia. Proceedings of the National Academy of Sciences of the USA 111, E2066E2075.CrossRefGoogle Scholar
Montgomery, SA and Asberg, M (1979) A new depression scale designed to be sensitive to change. British Journal of Psychiatry 134, 382389.CrossRefGoogle ScholarPubMed
Muglia, P, Tozzi, F, Galwey, NW, Francks, C, Upmanyu, R, Kong, XQ, Antoniades, A, Domenici, E, Perry, J, Rothen, S, Vandeleur, CL, Mooser, V, Waeber, G, Vollenweider, P, Preisig, M, Lucae, S, Muller-Myhsok, B, Holsboer, F, Middleton, LT and Roses, AD (2010) Genome-wide association study of recurrent major depressive disorder in two European case-control cohorts. Molecular Psychiatry 15, 589601.CrossRefGoogle ScholarPubMed
Nyman, ES, Sulkava, S, Soronen, P, Miettunen, J, Loukola, A, Leppa, V, Joukamaa, M, Maki, P, Jarvelin, MR, Freimer, N, Peltonen, L, Veijola, J and Paunio, T (2011) Interaction of early environment, gender and genes of monoamine neurotransmission in the aetiology of depression in a large population-based Finnish birth cohort. BMJ OPEN 1, e000087.CrossRefGoogle Scholar
Palma, C and Manzini, S (1998) Substance P induces secretion of immunomodulatory cytokines by human astrocytoma cells. Journal of Neuroimmunology 81, 127137.CrossRefGoogle ScholarPubMed
Pearlson, GD, Liu, J and Calhoun, VD (2015) An introductory review of parallel independent component analysis (p-ICA) and a guide to applying p-ICA to genetic data and imaging phenotypes to identify disease-associated biological pathways and systems in common complex disorders. Frontiers in Genetics 6, 276.CrossRefGoogle Scholar
Peng, D, Liddle, EB, Iwabuchi, SJ, Zhang, C, Wu, Z, Liu, J, Jiang, K, Xu, L, Liddle, PF, Palaniyappan, L and Fang, Y (2015) Dissociated large-scale functional connectivity networks of the precuneus in medication-naive first-episode depression. Psychiatry Research 232, 250256.CrossRefGoogle ScholarPubMed
Power, RA, Tansey, KE, Buttenschon, HN, Cohen-Woods, S, Bigdeli, T, Hall, LS, Kutalik, Z, Lee, SH, Ripke, S, Steinberg, S, Teumer, A, Viktorin, A, Wray, NR, Arolt, V, Baune, BT, Boomsma, DI, Borglum, AD, Byrne, EM, Castelao, E, Craddock, N, Craig, IW, Dannlowski, U, Deary, IJ, Degenhardt, F, Forstner, AJ, Gordon, SD, Grabe, HJ, Grove, J, Hamilton, SP, Hayward, C, Heath, AC, Hocking, LJ, Homuth, G, Hottenga, JJ, Kloiber, S, Krogh, J, Landen, M, Lang, M, Levinson, DF, Lichtenstein, P, Lucae, S, Macintyre, DJ, Madden, P, Magnusson, PK, Martin, NG, Mcintosh, AM, Middeldorp, CM, Milaneschi, Y, Montgomery, GW, Mors, O, Muller-Myhsok, B, Nyholt, DR, Oskarsson, H, Owen, MJ, Padmanabhan, S, Penninx, BW, Pergadia, ML, Porteous, DJ, Potash, JB, Preisig, M, Rivera, M, Shi, J, Shyn, SI, Sigurdsson, E, Smit, JH, Smith, BH, Stefansson, H, Stefansson, K, Strohmaier, J, Sullivan, PF, Thomson, P, Thorgeirsson, TE, Van der Auwera, S, Weissman, MM, Breen, G and Lewis, CM (2017) Genome-wide association for major depression through age at onset stratification: major depressive disorder working group of the psychiatric genomics consortium. Biological Psychiatry 81, 325335.CrossRefGoogle Scholar
Purcell, S, Neale, B, Todd-Brown, K, Thomas, L, Ferreira, MA, Bender, D, Maller, J, Sklar, P, de Bakker, PI, Daly, MJ and Sham, PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics 81, 559575.CrossRefGoogle ScholarPubMed
Purcell, SM, Moran, JL, Fromer, M, Ruderfer, D, Solovieff, N, Roussos, P, O'DUSHLAINE, C, Chambert, K, Bergen, SE, Kahler, A, Duncan, L, Stahl, E, Genovese, G, Fernandez, E, Collins, MO, Komiyama, NH, Choudhary, JS, Magnusson, PK, Banks, E, Shakir, K, Garimella, K, Fennell, T, Depristo, M, Grant, SG, Haggarty, SJ, Gabriel, S, Scolnick, EM, Lander, ES, Hultman, CM, Sullivan, PF, Mccarroll, SA and Sklar, P (2014) A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506, 185190.CrossRefGoogle Scholar
Putnam, DK, Sun, J and Zhao, Z (2011) Exploring schizophrenia drug-gene interactions through molecular network and pathway modeling. AMIA Annual Symposium Proceedings 2011, 11271133.Google ScholarPubMed
Rameshwar, P, Gascon, P and Ganea, D (1992) Immunoregulatory effects of neuropeptides. Stimulation of interleukin-2 production by substance p. Journal of Neuroimmunology 37, 6574.CrossRefGoogle ScholarPubMed
Rietschel, M, Mattheisen, M, Frank, J, Treutlein, J, Degenhardt, F, Breuer, R, Steffens, M, Mier, D, Esslinger, C, Walter, H, Kirsch, P, Erk, S, Schnell, K, Herms, S, Wichmann, HE, Schreiber, S, Jockel, KH, Strohmaier, J, Roeske, D, Haenisch, B, Gross, M, Hoefels, S, Lucae, S, Binder, EB, Wienker, TF, Schulze, TG, Schmal, C, Zimmer, A, Juraeva, D, Brors, B, Bettecken, T, Meyer-Lindenberg, A, Muller-Myhsok, B, Maier, W, Nothen, MM and Cichon, S (2010) Genome-wide association-, replication-, and neuroimaging study implicates HOMER1 in the etiology of major depression. Biological Psychiatry 68, 578585.CrossRefGoogle ScholarPubMed
Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium (2013) A mega-analysis of genome-wide association studies for major depressive disorder. Molecular Psychiatry 18, 497511.CrossRefGoogle Scholar
Ryan, JJ, Weilage, ME and Spaulding, WD (1999) Accuracy of the seven subtest WAIS-R short form in chronic schizophrenia. Schizophria Research 39, 7983.CrossRefGoogle ScholarPubMed
Schafer, DP, Lehrman, EK, Kautzman, AG, Koyama, R, Mardinly, AR, Yamasaki, R, Ransohoff, RM, Greenberg, ME, Barres, BA and Stevens, B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691705.CrossRefGoogle Scholar
Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421427.CrossRefGoogle Scholar
Schmaal, L, Hibar, DP, Samann, PG, Hall, GB, Baune, BT, Jahanshad, N, Cheung, JW, van Erp, TG, Bos, D, Ikram, MA, Vernooij, MW, Niessen, WJ, Tiemeier, H, Hofman, A, Wittfeld, K, Grabe, HJ, Janowitz, D, Bulow, R, Selonke, M, Volzke, H, Grotegerd, D, Dannlowski, U, Arolt, V, Opel, N, Heindel, W, Kugel, H, Hoehn, D, Czisch, M, Couvy-Duchesne, B, Renteria, ME, Strike, LT, Wright, MJ, Mills, NT, de Zubicaray, GI, Mcmahon, KL, Medland, SE, Martin, NG, Gillespie, NA, Goya-Maldonado, R, Gruber, O, Kramer, B, Hatton, SN, Lagopoulos, J, Hickie, IB, Frodl, T, Carballedo, A, Frey, EM, van Velzen, LS, Penninx, BW, van Tol, MJ, van der Wee, NJ, Davey, CG, Harrison, BJ, Mwangi, B, Cao, B, Soares, JC, Veer, IM, Walter, H, Schoepf, D, Zurowski, B, Konrad, C, Schramm, E, Normann, C, Schnell, K, Sacchet, MD, Gotlib, IH, Macqueen, GM, Godlewska, BR, Nickson, T, Mcintosh, AM, Papmeyer, M, Whalley, HC, Hall, J, Sussmann, JE, Li, M, Walter, M, Aftanas, L, Brack, I, Bokhan, NA, Thompson, PM and Veltman, DJ (2016) Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA major depressive disorder working group. Molecular Psychiatry 22, 900909.CrossRefGoogle ScholarPubMed
Sekar, A, Bialas, AR, de Rivera, H, Davis, A, Hammond, TR, Kamitaki, N, Tooley, K, Presumey, J, Baum, M, Van Doren, V, Genovese, G, Rose, SA, Handsaker, RE, Daly, MJ, Carroll, MC, Stevens, B and Mccarroll, SA (2016) Schizophrenia risk from complex variation of complement component 4. Nature 530, 177183.CrossRefGoogle ScholarPubMed
Sheehan, DV, Lecrubier, Y, Sheehan, KH, Amorim, P, Janavs, J, Weiller, E, Hergueta, T, Baker, R and Dunbar, GC (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry 59(suppl. 20), 2233;quiz 34-57.Google ScholarPubMed
Shen, Z, Cheng, Y, Yang, S, Dai, N, Ye, J, Liu, X, Lu, J, Li, N, Liu, F, Lu, Y, Sun, X and Xu, X (2016) Changes of grey matter volume in first-episode drug-naive adult major depressive disorder patients with different age-onset. Neuroimage Clinical 12, 492498.CrossRefGoogle ScholarPubMed
Shi, J, Johansson, J, Woodling, NS, Wang, Q, Montine, TJ and Andreasson, K (2010) The prostaglandin E2 E-prostanoid 4 receptor exerts anti-inflammatory effects in brain innate immunity. Journal of Immunology 184, 72077218.CrossRefGoogle ScholarPubMed
Shi, J, Potash, JB, Knowles, JA, Weissman, MM, Coryell, W, Scheftner, WA, Lawson, WB, Depaulo, JJ, Gejman, PV, Sanders, AR, Johnson, JK, Adams, P, Chaudhury, S, Jancic, D, Evgrafov, O, Zvinyatskovskiy, A, Ertman, N, Gladis, M, Neimanas, K, Goodell, M, Hale, N, Ney, N, Verma, R, Mirel, D, Holmans, P and Levinson, DF (2011) Genome-wide association study of recurrent early-onset major depressive disorder. Molecular Psychiatry 16, 193201.CrossRefGoogle ScholarPubMed
Singh, T, Walters, J, Johnstone, M, Curtis, D, Suvisaari, J, Torniainen, M, Rees, E, Iyegbe, C, Blackwood, D, Mcintosh, AM, Kirov, G, Geschwind, D, Murray, RM, Di Forti, M, Bramon, E, Gandal, M, Hultman, CM, Sklar, P, Palotie, A, Sullivan, PF, O'DONOVAN, MC, Owen, MJ and Barrett, JC (2017) The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nature Genetics 49, 11671173.CrossRefGoogle ScholarPubMed
Steen, VM, Nepal, C, Ersland, KM, Holdhus, R, Naevdal, M, Ratvik, SM, Skrede, S and Havik, B (2013) Neuropsychological deficits in mice depleted of the schizophrenia susceptibility gene CSMD1. PLoS ONE 8, e79501.CrossRefGoogle ScholarPubMed
Stevens, B, Allen, NJ, Vazquez, LE, Howell, GR, Christopherson, KS, Nouri, N, Micheva, KD, Mehalow, AK, Huberman, AD, Stafford, B, Sher, A, Litke, AM, Lambris, JD, Smith, SJ, John, SW and Barres, BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131, 11641178.CrossRefGoogle ScholarPubMed
Stockmeier, CA, Shi, X, Konick, L, Overholser, JC, Jurjus, G, Meltzer, HY, Friedman, L, Blier, P and Rajkowska, G (2002) Neurokinin-1 receptors are decreased in major depressive disorder. Neuroreport 13, 12231227.CrossRefGoogle ScholarPubMed
Sullivan, PF, Daly, MJ and O'DONOVAN, M (2012) Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nature Review Genetics 13, 537551.CrossRefGoogle ScholarPubMed
Tammimies, K, Marshall, CR, Walker, S, Kaur, G, Thiruvahindrapuram, B, Lionel, AC, Yuen, RK, Uddin, M, Roberts, W, Weksberg, R, Woodbury-Smith, M, Zwaigenbaum, L, Anagnostou, E, Wang, Z, Wei, J, Howe, JL, Gazzellone, MJ, Lau, L, Sung, WW, Whitten, K, Vardy, C, Crosbie, V, Tsang, B, D'ABATE, L, Tong, WW, Luscombe, S, Doyle, T, Carter, MT, Szatmari, P, Stuckless, S, Merico, D, Stavropoulos, DJ, Scherer, SW and Fernandez, BA (2015) Molecular diagnostic yield of chromosomal microarray analysis and whole-exome sequencing in children With autism Spectrum disorder. JAMA 314, 895903.CrossRefGoogle ScholarPubMed
Tammiste, A, Jiang, T, Fischer, K, Magi, R, Krjutskov, K, Pettai, K, Esko, T, Li, Y, Tansey, KE, Carroll, LS, Uher, R, Mcguffin, P, Vosa, U, Tsernikova, N, Saria, A, Ng, PC, Eller, T, Vasar, V, Nutt, DJ, Maron, E, Wang, J and Metspalu, A (2013) Whole-exome sequencing identifies a polymorphism in the BMP5 gene associated with SSRI treatment response in major depression. Journal of Psychopharmacology 27, 915920.CrossRefGoogle ScholarPubMed
Terracciano, A, Tanaka, T, Sutin, AR, Sanna, S, Deiana, B, Lai, S, Uda, M, Schlessinger, D, Abecasis, GR, Ferrucci, L and Costa, PJ (2010) Genome-wide association scan of trait depression. Biological Psychiatry 68, 811817.CrossRefGoogle ScholarPubMed
Tombacz, D, Maroti, Z, Kalmar, T, Csabai, Z, Balazs, Z, Takahashi, S, Palkovits, M, Snyder, M and Boldogkoi, Z (2017) High-coverage whole-exome sequencing identifies candidate genes for suicide in victims with major depressive disorder. Scientific Report 7, 7106.CrossRefGoogle ScholarPubMed
Uddin, LQ, Kelly, AM, Biswal, BB, Castellanos, FX and Milham, MP (2009) Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Human Brain Mapping 30, 625637.CrossRefGoogle ScholarPubMed
Vassilatis, DK, Hohmann, JG, Zeng, H, Li, F, Ranchalis, JE, Mortrud, MT, Brown, A, Rodriguez, SS, Weller, JR, Wright, AC, Bergmann, JE and Gaitanaris, GA (2003) The G protein-coupled receptor repertoires of human and mouse. Proceedings of the National Academy of Sciences of the USA 100, 49034908.CrossRefGoogle Scholar
Wagner, K, Uherek, M, Horstmann, S, Kadish, NE, Wisniewski, I, Mayer, H, Buschmann, F, Metternich, B, Zentner, J and Schulze-Bonhage, A (2013) Memory outcome after hippocampus sparing resections in the temporal lobe. Journal of Neurology, Neurosurgery, and Psychiatry 84, 630636.CrossRefGoogle ScholarPubMed
Wainwright, SR and Galea, LA (2013) The neural plasticity theory of depression: assessing the roles of adult neurogenesis and PSA-NCAM within the hippocampus. Neural Plasticity 2013, 805497.CrossRefGoogle ScholarPubMed
Wray, NR, Pergadia, ML, Blackwood, DH, Penninx, BW, Gordon, SD, Nyholt, DR, Ripke, S, Macintyre, DJ, Mcghee, KA, Maclean, AW, Smit, JH, Hottenga, JJ, Willemsen, G, Middeldorp, CM, de Geus, EJ, Lewis, CM, Mcguffin, P, Hickie, IB, van den Oord, EJ, Liu, JZ, Macgregor, S, Mcevoy, BP, Byrne, EM, Medland, SE, Statham, DJ, Henders, AK, Heath, AC, Montgomery, GW, Martin, NG, Boomsma, DI, Madden, PA and Sullivan, PF (2012) Genome-wide association study of major depressive disorder: new results, meta-analysis, and lessons learned. Molecular Psychiatry 17, 3648.CrossRefGoogle ScholarPubMed
Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium (2018) Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics 50, 668681.CrossRefGoogle Scholar
Yamamoto, T, Saito, O, Shono, K and Tanabe, S (2005) Anti-hyperalgesic effects of intrathecally administered neuropeptide W-23, and neuropeptide B, in tests of inflammatory pain in rats. Brain Research 1045, 97106.CrossRefGoogle ScholarPubMed
Yang, LM, Yu, L, Jin, HJ and Zhao, H (2014) Substance P receptor antagonist in lateral habenula improves rat depression-like behavior. Brain Research Bulletin 100, 2228.CrossRefGoogle ScholarPubMed
Zeng, LL, Shen, H, Liu, L, Fang, P, Liu, Y and Hu, D (2015) State-dependent and trait-related gray matter changes in nonrefractory depression. Neuroreport 26, 5765.CrossRefGoogle ScholarPubMed
Zhan, X, Hu, Y, Li, B, Abecasis, GR and Liu, DJ (2016) RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data. Bioinformatics (Oxford, England) 32, 14231426.CrossRefGoogle ScholarPubMed
Zhang, H, Li, L, Wu, M, Chen, Z, Hu, X, Chen, Y, Zhu, H, Jia, Z and Gong, Q (2016 a) Brain gray matter alterations in first episodes of depression: a meta-analysis of whole-brain studies. Neuroscience and Biobehavioral Review 60, 4350.CrossRefGoogle ScholarPubMed
Zhang, Y, Catts, VS, Sheedy, D, Mccrossin, T, Kril, JJ and Shannon, WC (2016 b) Cortical grey matter volume reduction in people with schizophrenia is associated with neuro-inflammation. Translational Psychiatry 6, e982.CrossRefGoogle ScholarPubMed
Zhu, W, Chen, Q, Xia, L, Beaty, RE, Yang, W, Tian, F, Sun, J, Cao, G, Zhang, Q, Chen, X and Qiu, J (2017) Common and distinct brain networks underlying verbal and visual creativity. Human Brain Mapping 38, 20942111.CrossRefGoogle ScholarPubMed
Zorrilla, EP, Luborsky, L, Mckay, JR, Rosenthal, R, Houldin, A, Tax, A, Mccorkle, R, Seligman, DA and Schmidt, K (2001) The relationship of depression and stressors to immunological assays: a meta-analytic review. Brain, Behavior, and Immunity 15, 199226.CrossRefGoogle ScholarPubMed
Supplementary material: File

Zhang et al. supplementary material

Zhang et al. supplementary material 1

Download Zhang et al. supplementary material(File)
File 8.2 MB