Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T18:01:00.182Z Has data issue: false hasContentIssue false

Associations between aberrant working memory-related neural activity and cognitive impairments in somatically healthy, remitted patients with mood disorders

Published online by Cambridge University Press:  13 April 2023

Julian Macoveanu
Affiliation:
Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, and Department of Psychology, University of Copenhagen, Copenhagen, Denmark
Jeff Zarp Petersen
Affiliation:
Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, and Department of Psychology, University of Copenhagen, Copenhagen, Denmark
Patrick M. Fisher
Affiliation:
Neurobiology Research Unit and Center for Integrated Molecular Imaging, Rigshospitalet, Copenhagen, Denmark
Lars Vedel Kessing
Affiliation:
Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
Gitte Moos Knudsen
Affiliation:
Neurobiology Research Unit and Center for Integrated Molecular Imaging, Rigshospitalet, Copenhagen, Denmark Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
Kamilla Woznica Miskowiak*
Affiliation:
Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Mental Health Services, Capital Region of Denmark, and Department of Psychology, University of Copenhagen, Copenhagen, Denmark Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
*
Corresponding author: Kamilla Woznica Miskowiak; Email: kamilla.miskowiak@regionh.dk

Abstract

Background

Persistent cognitive deficits are prevalent in patients with bipolar disorder (BD) and unipolar disorder (UD), but treatments effectively targeting cognition in these mood disorders are lacking. This is partly due to poor insight into the neuronal underpinnings of cognitive deficits.

Methods

The aim of this functional magnetic resonance imaging (fMRI) study was to investigate the neuronal underpinnings of working memory (WM)-related deficits in somatically healthy, remitted patients with BD or UD (n = 66) with cognitive and functional impairments compared to 38 healthy controls (HC). The participants underwent neuropsychological testing and fMRI, while performing a visuospatial and a verbal N-back WM paradigm.

Results

Relative to HC, patients exhibited hypo-activity across dorsolateral prefrontal cortex as well as frontal and parietal nodes of the cognitive control network (CCN) and hyper-activity in left orbitofrontal cortex within the default mode network (DMN) during both visuospatial and verbal WM performance. Verbal WM-related response in the left posterior superior frontal gyrus (SFG) within CCN was lower in patients and correlated positively with out-of-scanner executive function performance across all participants.

Conclusions

Our findings suggest that cognitive impairments across BD and UD are associated with insufficient recruitment of task-relevant regions in the CCN and down-regulation of task-irrelevant orbitofrontal activity within the DMN during task performance. Specifically, a lower recruitment of the left posterior SFG within CCN during verbal WM was associated with lower cognitive performance.

Type
Original Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Authors contributed equally as shared first authors.

References

Alonso-Lana, S., Goikolea, J. M., Bonnin, C. M., Sarró, S., Segura, B., Amann, B. L., … McKenna, P. J. (2016). Structural and functional brain correlates of cognitive impairment in euthymic patients with bipolar disorder. PLoS ONE, 11(7), e0158867.CrossRefGoogle ScholarPubMed
Anticevic, A., Cole, M. W., Murray, J. D., Corlett, P. R., Wang, X.-J., & Krystal, J. H. (2012). The role of default network deactivation in cognition and disease. Trends in Cognitive Sciences, 16(12), 584592.CrossRefGoogle ScholarPubMed
Battery, A. I. T. (1944). Manual of directions and scoring. Washington, DC: War Department, Adjutant General's Office.Google Scholar
Bora, E., Hıdıroğlu, C., Özerdem, A., Kaçar, ÖF, Sarısoy, G., Arslan, F. C., … Atalay, A. (2016). Executive dysfunction and cognitive subgroups in a large sample of euthymic patients with bipolar disorder. European Neuropsychopharmacology, 26(8), 13381347.CrossRefGoogle Scholar
Borkowski, J. G., Benton, A. L., & Spreen, O. (1967). Word fluency and brain damage. Neuropsychologia, 5(2), 135140.CrossRefGoogle Scholar
Brandt, C. L., Eichele, T., Melle, I., Sundet, K., Server, A., Agartz, I., … Andreassen, O. A. (2014). Working memory networks and activation patterns in schizophrenia and bipolar disorder: Comparison with healthy controls. The British Journal of Psychiatry, 204(4), 290298.CrossRefGoogle ScholarPubMed
Burdick, K. E., Russo, M., Frangou, S., Mahon, K., Braga, R. J., Shanahan, M., & Malhotra, A. K. (2014). Empirical evidence for discrete neurocognitive subgroups in bipolar disorder: Clinical implications. Psychological Medicine, 44(14), 30833096.CrossRefGoogle ScholarPubMed
Campbell, N., Boustani, M., Limbil, T., Ott, C., Fox, C., Maidment, I., … Gulati, R. (2009). The cognitive impact of anticholinergics: A clinical review. Clinical Interventions in Aging, 4, 225233. doi: 10.2147/cia.s5358.Google ScholarPubMed
Carhart-Harris, R. L., Bolstridge, M., Day, C., Rucker, J., Watts, R., Erritzoe, D., … Pilling, S. (2018). Psilocybin with psychological support for treatment-resistant depression: Six-month follow-up. Psychopharmacology, 235(2), 399408.CrossRefGoogle ScholarPubMed
Cerullo, M. A., & Strakowski, S. M. (2007). The prevalence and significance of substance use disorders in bipolar type I and II disorder. Substance Abuse Treatment, Prevention, and Policy, 2(1), 19.CrossRefGoogle ScholarPubMed
Davis, L., Uezato, A., Newell, J. M., & Frazier, E. (2008). Major depression and comorbid substance use disorders. Current Opinion in Psychiatry, 21(1), 1418.CrossRefGoogle ScholarPubMed
Depp, C. A., Mausbach, B. T., Harmell, A. L., Savla, G. N., Bowie, C. R., Harvey, P. D., & Patterson, T. L. (2012). Meta-analysis of the association between cognitive abilities and everyday functioning in bipolar disorder. Bipolar Disorders, 14(3), 217226. doi: 10.1111/j.1399-5618.2012.01011.xCrossRefGoogle ScholarPubMed
Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., … Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968980. doi: 10.1016/j.neuroimage.2006.01.021CrossRefGoogle ScholarPubMed
Dias, V. V., Balanzá-Martinez, V., Soeiro-de-Souza, M., Moreno, R., Figueira, M., Machado-Vieira, R., & Vieta, E. (2012). Pharmacological approaches in bipolar disorders and the impact on cognition: A critical overview. Acta Psychiatrica Scandinavica, 126(5), 315331.CrossRefGoogle ScholarPubMed
du Boisgueheneuc, F., Levy, R., Volle, E., Seassau, M., Duffau, H., Kinkingnehun, S., … Dubois, B. (2006). Functions of the left superior frontal gyrus in humans: A lesion study. Brain, 129(Pt 12), 33153328. doi: 10.1093/brain/awl244CrossRefGoogle ScholarPubMed
Emch, M., Von Bastian, C. C., & Koch, K. (2019). Neural correlates of verbal working memory: An fMRI meta-analysis. Frontiers in Human Neuroscience, 13, 180. doi: 10.3389/fnhum.2019.00180CrossRefGoogle ScholarPubMed
Fernández-Corcuera, P., Salvador, R., Monté, G. C., Sarró, S. S., Goikolea, J. M., Amann, B., … Vieta, E. (2013). Bipolar depressed patients show both failure to activate and failure to de-activate during performance of a working memory task. Journal of Affective Disorders, 148(2–3), 170178.CrossRefGoogle ScholarPubMed
Fitzgerald, P. B., Srithiran, A., Benitez, J., Daskalakis, Z. Z., Oxley, T. J., Kulkarni, J., & Egan, G. F. (2008). An fMRI study of prefrontal brain activation during multiple tasks in patients with major depressive disorder. Human Brain Mapping, 29(4), 490501.CrossRefGoogle ScholarPubMed
Frangou, S., Kington, J., Raymont, V., & Shergill, S. S. (2008). Examining ventral and dorsal prefrontal function in bipolar disorder: A functional magnetic resonance imaging study. European Psychiatry, 23(4), 300308.CrossRefGoogle ScholarPubMed
Grier, J. B. (1971). Nonparametric indexes for sensitivity and bias: Computing formulas. Psychological Bulletin, 75, 424429. doi: 10.1037/h0031246CrossRefGoogle ScholarPubMed
Gualtieri, C. T., & Morgan, D. W. (2008). The frequency of cognitive impairment in patients with anxiety, depression, and bipolar disorder: An unaccounted source of variance in clinical trials. Journal of Clinical Psychiatry, 69(7), 11221130.CrossRefGoogle ScholarPubMed
Hadley, G., Zhang, J., Harris-Skillman, E., Alexopoulou, Z., DeLuca, G. C., & Pendlebury, S. T. (2022). Cognitive decline and diabetes: A systematic review of the neuropathological correlates accounting for cognition at death. Journal of Neurology, Neurosurgery & Psychiatry, 93(3), 246253.CrossRefGoogle ScholarPubMed
Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery, and Psychiatry, 23(1), 56. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/14399272.CrossRefGoogle ScholarPubMed
Harrison, S. L., Ding, J., Tang, E. Y., Siervo, M., Robinson, L., Jagger, C., & Stephan, B. C. (2014). Cardiovascular disease risk models and longitudinal changes in cognition: A systematic review. PLoS ONE, 9(12), e114431.CrossRefGoogle ScholarPubMed
Harvey, P.-O., Fossati, P., Pochon, J.-B., Levy, R., LeBastard, G., Lehéricy, S., … Dubois, B. (2005). Cognitive control and brain resources in major depression: An fMRI study using the n-back task. Neuroimage, 26(3), 860869.CrossRefGoogle ScholarPubMed
Jaeger, J., Berns, S., Loftus, S., Gonzalez, C., & Czobor, P. (2007). Neurocognitive test performance predicts functional recovery from acute exacerbation leading to hospitalization in bipolar disorder. Bipolar Disorders, 9(1–2), 93102.CrossRefGoogle ScholarPubMed
Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). Fsl. Neuroimage, 62(2), 782790.CrossRefGoogle ScholarPubMed
Jensen, J. H., Knorr, U., Vinberg, M., Kessing, L. V., & Miskowiak, K. W. (2016). Discrete neurocognitive subgroups in fully or partially remitted bipolar disorder: Associations with functional abilities. Journal of Affective Disorders, 205, 378386.CrossRefGoogle ScholarPubMed
Jensen, J. H., Støttrup, M. M., Nayberg, E., Knorr, U., Ullum, H., Purdon, S. E., … Miskowiak, K. W. (2015). Optimising screening for cognitive dysfunction in bipolar disorder: Validation and evaluation of objective and subjective tools. Journal of Affective Disorders, 187, 1019.CrossRefGoogle ScholarPubMed
Joshi, S. H., Vizueta, N., Foland-Ross, L., Townsend, J. D., Bookheimer, S. Y., Thompson, P. M., … Altshuler, L. L. (2016). Relationships between altered functional magnetic resonance imaging activation and cortical thickness in patients with euthymic bipolar I disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1(6), 507517.Google ScholarPubMed
Kessing, L. V., Forman, J. L., & Andersen, P. K. (2010). Does lithium protect against dementia? Bipolar Disorders, 12(1), 8794.CrossRefGoogle ScholarPubMed
Kessing, L. V., Munkholm, K., Faurholt-Jepsen, M., Miskowiak, K. W., Nielsen, L. B., Frikke-Schmidt, R., … Vinberg, M. (2017). The bipolar illness onset study: Research protocol for the BIO cohort study. BMJ Open, 7(6), e015462. doi: 10.1136/bmjopen-2016-015462CrossRefGoogle ScholarPubMed
Kessing, L. V., Søndergård, L., Forman, J. L., & Andersen, P. K. (2008). Lithium treatment and risk of dementia. Archives of General Psychiatry, 65(11), 13311335.CrossRefGoogle ScholarPubMed
Kjaerstad, H. L., Eikeseth, F. F., Vinberg, M., Kessing, L. V., & Miskowiak, K. W. (2019). Neurocognitive heterogeneity in patients newly diagnosed with bipolar disorder and their unaffected relatives: Associations with emotional cognition. Psychological Medicine, 2021 Mar, 51(4):668679. doi: 10.1017/S0033291719003738. Epub 2019 Dec 26. PMID: 31875793.CrossRefGoogle ScholarPubMed
Ko, K. Y., Ridley, N., Bryce, S. D., Allott, K., Smith, A., & Kamminga, J. (2021). Screening tools for cognitive impairment in adults with substance use disorders: A systematic review. Journal of the International Neuropsychological Society, 28(7), 124.Google ScholarPubMed
Madsen, M. K., Stenbæk, D. S., Arvidsson, A., Armand, S., Marstrand-Joergensen, M. R., Johansen, S. S., … Fisher, P. M. (2021). Psilocybin-induced changes in brain network integrity and segregation correlate with plasma psilocin level and psychedelic experience. European Neuropsychopharmacology, 50, 121132.CrossRefGoogle ScholarPubMed
McIntyre, R. S., Cha, D. S., Soczynska, J. K., Woldeyohannes, H. O., Gallaugher, L. A., Kudlow, P., … Baskaran, A. (2013). Cognitive deficits and functional outcomes in major depressive disorder: Determinants, substrates, and treatment interventions. Depression and Anxiety, 30(6), 515527.CrossRefGoogle ScholarPubMed
McIntyre, R. S., Florea, I., Tonnoir, B., Loft, H., Lam, R. W., & Christensen, M. C. (2017). Efficacy of vortioxetine on cognitive functioning in working patients with major depressive disorder. The Journal of Clinical Psychiatry, 78(1), 22276.CrossRefGoogle ScholarPubMed
McKenna, B. S., Sutherland, A. N., Legenkaya, A. P., & Eyler, L. T. (2014). Abnormalities of brain response during encoding into verbal working memory among euthymic patients with bipolar disorder. Bipolar Disorders, 16(3), 289299.CrossRefGoogle ScholarPubMed
Miskowiak, K. W., Burdick, K. E., Martinez-Aran, A., Bonnin, C. M., Bowie, C. R., Carvalho, A. F., … Vieta, E. (2017). Methodological recommendations for cognition trials in bipolar disorder by the international society for bipolar disorders targeting cognition task force. Bipolar Disorders, 19(8), 614626.CrossRefGoogle ScholarPubMed
Miskowiak, K. W., & Petersen, C. S. (2019). Neuronal underpinnings of cognitive impairment and-improvement in mood disorders. CNS Spectrums, 24(1), 3053.CrossRefGoogle ScholarPubMed
Nelson, H. E., & Willison, J. (1991). National adult reading test (NART) (pp. 126). Windsor: Nfer-Nelson.Google Scholar
Nichols, T., Brett, M., Andersson, J., Wager, T., & Poline, J. B. (2005). Valid conjunction inference with the minimum statistic. Neuroimage, 25(3), 653660.CrossRefGoogle ScholarPubMed
Norbury, R., Godlewska, B., & Cowen, P. J. (2014). When less is more: A functional magnetic resonance imaging study of verbal working memory in remitted depressed patients. Psychological Medicine, 44(6), 11971203.CrossRefGoogle Scholar
Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 4659.CrossRefGoogle ScholarPubMed
Penfold, C., Vizueta, N., Townsend, J. D., Bookheimer, S. Y., & Altshuler, L. L. (2015). Frontal lobe hypoactivation in medication-free adults with bipolar II depression during response inhibition. Psychiatry Research: Neuroimaging, 231(3), 202209.CrossRefGoogle ScholarPubMed
Petersen, J. Z., Macoveanu, J., Kjærstad, H. L., Knudsen, G. M., Kessing, L. V., & Miskowiak, K. W. (2021). Assessment of the neuronal underpinnings of cognitive impairment in bipolar disorder with a picture encoding paradigm and methodological lessons learnt. Journal of Psychopharmacology, 35(8), 983991.CrossRefGoogle ScholarPubMed
Petersen, J. Z., Schmidt, L. S., Vinberg, M., Jørgensen, M. B., Hageman, I., Ehrenreich, H., … Miskowiak, K. W. (2018). Effects of recombinant human erythropoietin on cognition and neural activity in remitted patients with mood disorders and first-degree relatives of patients with psychiatric disorders: A study protocol for a randomized controlled trial. Trials, 19, 114.CrossRefGoogle ScholarPubMed
Pu, S., Noda, T., Setoyama, S., & Nakagome, K. (2018). Empirical evidence for discrete neurocognitive subgroups in patients with non-psychotic major depressive disorder: Clinical implications. Psychological Medicine, 48(16), 27172729.CrossRefGoogle ScholarPubMed
Purdon, S. E. (2005). The screen for cognitive impairment in psychiatry (SCIP): Instructions and three alternate forms. Edmonton, Alberta, Canada: PNL Inc.Google Scholar
Randolph, C., Tierney, M. C., Mohr, E., & Chase, T. N. (1998). The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): Preliminary clinical validity. Journal of Clinical and Experimental Neuropsychology, 20(3), 310319. doi: 10.1076/jcen.20.3.310.823CrossRefGoogle ScholarPubMed
Rosa, A. R., Sánchez-Moreno, J., Martínez-Aran, A., Salamero, M., Torrent, C., Reinares, M., … Vieta, E. (2007). Validity and reliability of the Functioning Assessment Short Test (FAST) in bipolar disorder. Clinical Practice and Epidemiology in Mental Health, 3(1), 18.CrossRefGoogle ScholarPubMed
Sanches, M., Bauer, I. E., Galvez, J. F., Zunta-Soares, G. B., & Soares, J. C. (2015). The management of cognitive impairment in bipolar disorder: Current status and perspectives. American Journal of Therapeutics, 22(6), 477.CrossRefGoogle Scholar
Schmidt, M. (1996). Rey auditory verbal learning test: A handbook (pp. 1996). Los Angeles, CA: Western Psychological Services.Google Scholar
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591611.CrossRefGoogle Scholar
Sheline, Y. I., Barch, D. M., Price, J. L., Rundle, M. M., Vaishnavi, S. N., Snyder, A. Z., … Raichle, M. E. (2009). The default mode network and self-referential processes in depression. Proceedings of the National Academy of Sciences, 106(6), 19421947.CrossRefGoogle ScholarPubMed
Smith, J., Browning, M., Conen, S., Smallman, R., Buchbjerg, J., Larsen, K., … Deakin, J. (2018). Vortioxetine reduces BOLD signal during performance of the N-back working memory task: A randomised neuroimaging trial in remitted depressed patients and healthy controls. Molecular Psychiatry, 23(5), 11271133.CrossRefGoogle ScholarPubMed
Speth, J., Speth, C., Kaelen, M., Schloerscheidt, A. M., Feilding, A., Nutt, D. J., & Carhart-Harris, R. L. (2016). Decreased mental time travel to the past correlates with default-mode network disintegration under lysergic acid diethylamide. Journal of Psychopharmacology, 30(4), 344353.CrossRefGoogle Scholar
Torrent, C., Martinez-Arán, A., del Mar Bonnin, C., Reinares, M., Daban, C., Solé, B., … Vieta, E. (2012). Long-term outcome of cognitive impairment in bipolar disorder. The Journal of Clinical Psychiatry, 73(7), 10736.CrossRefGoogle ScholarPubMed
Townsend, J., Bookheimer, S. Y., Foland-Ross, L. C., Sugar, C. A., & Altshuler, L. L. (2010). fMRI abnormalities in dorsolateral prefrontal cortex during a working memory task in manic, euthymic and depressed bipolar subjects. Psychiatry Research: Neuroimaging, 182(1), 2229.CrossRefGoogle ScholarPubMed
Tse, S., Chan, S., Ng, K. L., & Yatham, L. N. (2014). Meta-analysis of predictors of favorable employment outcomes among individuals with bipolar disorder. Bipolar Disorders, 16(3), 217229.CrossRefGoogle ScholarPubMed
Vieta, E., & Torrent, C. (2016). Functional remediation: The pathway from remission to recovery in bipolar disorder. World Psychiatry, 15(3), 288289.CrossRefGoogle ScholarPubMed
Walter, H., Wolf, R. C., Spitzer, M., & Vasic, N. (2007). Increased left prefrontal activation in patients with unipolar depression: An event-related, parametric, performance-controlled fMRI study. Journal of Affective Disorders, 101(1–3), 175185.CrossRefGoogle ScholarPubMed
Weathers, J., Brotman, M. A., Deveney, C. M., Kim, P., Zarate, C. Jr., Fromm, S., … Leibenluft, E. (2013). A developmental study on the neural circuitry mediating response flexibility in bipolar disorder. Psychiatry Research: Neuroimaging, 214(1), 5665.CrossRefGoogle Scholar
Wechsler, D. (1997). WAIS-III: Wechsler adult intelligence scale. Psychological Corporation.Google Scholar
Weissman, D. H., Roberts, K., Visscher, K., & Woldorff, M. (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9(7), 971978.CrossRefGoogle ScholarPubMed
Wing, J. K., Babor, T., Brugha, T. S., Burke, J., Cooper, J. E., Giel, R., … Sartorius, N. (1990). SCAN: Schedules for clinical assessment in neuropsychiatry. Archives of General Psychiatry, 47(6), 589593.CrossRefGoogle ScholarPubMed
Woolrich, M. W., Behrens, T. E., Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2004). Multilevel linear modelling for FMRI group analysis using Bayesian inference. Neuroimage, 21(4), 17321747.CrossRefGoogle ScholarPubMed
Woolrich, M. W., Ripley, B. D., Brady, M., & Smith, S. M. (2001). Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage, 14(6), 13701386.CrossRefGoogle ScholarPubMed
Young, R. C., Biggs, J. T., Ziegler, V. E., & Meyer, D. A. (1978). A rating scale for mania: Reliability, validity and sensitivity. The British Journal of Psychiatry, 133(5), 429435.CrossRefGoogle ScholarPubMed
Zarp Petersen, J., Varo, C., Skovsen, C. F., Ott, C. V., Kjærstad, H. L., Vieta, E., … Miskowiak, K. W. (2022). Neuronal underpinnings of cognitive impairment in bipolar disorder: A large data-driven functional magnetic resonance imaging study. Bipolar Disorders, 24(1), 6981.CrossRefGoogle ScholarPubMed
Zhou, H. X., Chen, X., Shen, Y. Q., Li, L., Chen, N. X., Zhu, Z. C., … Yan, C. G. (2020). Rumination and the default mode network: Meta-analysis of brain imaging studies and implications for depression. Neuroimage, 206, 116287.CrossRefGoogle ScholarPubMed
Supplementary material: File

Macoveanu et al. supplementary material
Download undefined(File)
File 17.7 KB