Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T05:20:09.634Z Has data issue: false hasContentIssue false

Biochemical hypotheses on antidepressant drugs: a guide for clinicians or a toy for pharmacologists?

Published online by Cambridge University Press:  09 July 2009

Silvio Garattini
Affiliation:
Istituto di Ricerche Farmacologiche ‘Mario Negri’, Milan, Italy
Rosario Samanin
Affiliation:
Istituto di Ricerche Farmacologiche ‘Mario Negri’, Milan, Italy

Synopsis

The development of knowledge about the mechanism of action of tricyclic and the so-called ‘atypical’ antidepressants (AD) is reviewed. The discovery of clinically active antidepressants with little or no effect on noradrenaline or serotonin uptake has disproved the widely accepted concept that inhibition of monoamine uptake is a prerequisite for antidepressant activity. Another serious objection to this hypothesis is that blockade of monoamine uptake occurs in a matter of minutes after administration while 2–3 weeks of repeated treatment are necessary for the clinical AD effect. Nevertheless, the effect of repeated treatment with AD is compatible with the hypothesis that changes in central monoamine transmission are involved in the clinical activity of these drugs. Major changes in monoamine function after repeated treatment with AD include: desensitization and reduced density of noradrenaline receptors coupled to the adenylcyclase system, opposite changes in the sensitivity of α1 (increased) and α2-adrenoreceptors (decreased), down regulation of serotonin2 receptors and complex changes in the behavioural and electrophysiological responsiveness to serotonin agonists, subsensitivity of presynaptic dopamine receptors and enhanced activity of the mesolimbic dopamine system, decreased and increased density of GABA-A and GABA-B receptors respectively and down regulation of [3H]benzodiazepine binding.

It remains to be clarified whether some of these changes have larger roles than others or whether they all contribute to the AD activity. An important role of dopamine in the activity of AD drugs is suggested by findings in the forced swimming test, whereas both catecholamines seem to be involved in the attenuation of escape deficit provoked by inescapable shock (learned helplessness). No clear evidence for a role of serotonin (with the possible exception of serotonin1A receptors) or GABA has been obtained in these experimental models of depression. The general validity of these findings obviously rests on the assumption that these models represent significant aspects of human depression.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahtee, L., Briley, M., Raisman, R., Lebrec, D. & Langer, S. Z. (1981). Reduced uptake of serotonin but unchanged 3H-imipramine binding in the platelets from cirrhotic patients. Life Sciences 29, 23232329.CrossRefGoogle ScholarPubMed
Anderson, J. L. (1983). Serotonin receptor changes after chronic antidepressant treatments: ligand binding, electrophysiological, and behavioural studies. Life Sciences 32, 17911801.CrossRefGoogle Scholar
Anisman, H, Suissa, A. & Sklar, L. S. (1980) Escape deficits induced by uncontrollable stress: antagonism by norepinephrine and dopamine agonists. Behavioral and Neural Biology 28, 3437.CrossRefGoogle Scholar
Aprison, M. H., Takahashi, R. & Tachiki, K. (1978). Hypersensitive serotonergic receptors involved in clinical depression. A theory. In Neuropharmacology and Behavior (ed. Haber, B. and Aprison, M. H.), pp. 2353. Plenum Press: New York.CrossRefGoogle Scholar
Arbilla, S., Briley, M., Cathala, F., Langer, S.Z, Pornin, C. & Raisman, R. (1981). Parallel changes in [3H]-imipramine binding sites in cat brain and platelets following chronic treatment with imipramine. British Journal of Pharmacology 72, 154155.Google Scholar
Åsberg, M., Bertilsson, L., Rydin, E., Schalling, D., Thoren, P. & Traskman-Bendz, L. (1981). Monoamine metabolites in cerebrospinal fluid in relation to depressive illness, suicidal behavior and personality. In Advances in the Biosciences. vol. 31. Recent Advances in Neuropsychopharmacology (ed. Angrist, B., Burrows, G. D., Lader, M., Lingjaerde, O., Sedvall, G. and Wheatley, D.), pp. 257271. Pergamon Press: Oxford.Google Scholar
Ashcroft, G. W., Crawford, T. B. B., Eccleston, D., Sharman, D. F., MacDougall, E. J., Stanton, J. B. & Binns, J. K. (1966). 5- Hydroxyindole compounds in the cerebrospinal fluid of patients with psychiatric or neurological diseases. Lancet ii, 10491052.CrossRefGoogle Scholar
Banki, C. M. (1977). Correlation between cerebrospinal fluid amine metabolites and psychomotor activity in affective disorders. Journal of Neurochemislry 28, 255257.CrossRefGoogle ScholarPubMed
Barbaccia, M. L. & Costa, E. (1986). Endogenous ligands for the 3H-imipramine and 3H-ketanserin recognition sites. Clinical Neuropharmacology 9 suppl. 4, 223225.Google Scholar
Barbaccia, M. L., Gandolfi, O., Chuang, D. M. & Costa, E. (1983 a). Modulation of neuronal serotonin uptake by a putative endogenous ligand of imipramine recognition site. Proceedings of the National Academy of Sciences, USA 80, 51345138.CrossRefGoogle Scholar
Barbaccia, M. L., Brunello, N., Chuang, D. M. & Costa, E. (1983 b). On the mode of action of imipramine relationship between serotonergic axon terminal function and down-regulation of β-adrenergic receptors. Neuropharmacology 22, 373383.CrossRefGoogle ScholarPubMed
Barbaccia, M. L., Ravizza, L. & Costa, E. (1986). Maprotiline: an antidepressant with an unusual pharmacological profile. Journal of Pharmacology and Experimental Therapeutics 236, 307312.Google ScholarPubMed
Bartholini, G., Lloyd, K G., Scatton, B., Zivkovic, B. & Morselli, P. L. (1985) The GABA hypothesis of depression and antidepressant drug action. Psychopharmacology Bulletin 21, 385388.Google ScholarPubMed
Bendotti, C., Berettera, C., Invernizzi, R. & Samanin, R. (1986). Selective involvement of dopamine in the nucleus accumbens in the feeding response elicited by muscimol injection in the nucleus raphe dorsalis of sated rats. Pharmacology, Biochemistry and Behavior 24, 11891193.CrossRefGoogle ScholarPubMed
Berettera, C, Invernizzi, R., Pulvirenti, L. & Samanin, R. (1986). Chronic treatment with iprindole reduces immobility of rats in the behavioural ‘despair’ test by activating dopaminergic mechanisms in the brain. Journal of Pharmacy and Pharmacology 38, 313315.CrossRefGoogle ScholarPubMed
Borsini, F., Bendotti, C, Velkov, V., Rech, R. & Samanin, R. (1981). Immobility test. Effects of 5-hydroxytryptaminergic drugs and role of catecholamines in the activity of some antidepressants. Journal of Pharmacy and Pharmacology 33, 3337.CrossRefGoogle ScholarPubMed
Borsini, F., Nowakowska, E. & Samanin, R. (1984). Effect of repeated treatment with desipramine in the behavioral ‘despair’ test in rats: antagonism by‘ atypical’ but not ‘classical’ neuroleptics or antiadrenergic drugs. Life Sciences 34, 11711176.CrossRefGoogle Scholar
Borsini, F., Pulvirenti, L. & Samanin, R. (1985) Evidence of dopamine involvement in the effect of repeated treatment with various antidepressants in the behavioural ‘despair’ test in rats. European Journal of Pharmacology 110, 253256.CrossRefGoogle ScholarPubMed
Borsini, F., Evangelista, S. & Meli, A. (1986). Effect of GABAergic drugs in the behavioral ‘despair’ test in rats. European Journal of Pharmacology 121, 265268.CrossRefGoogle ScholarPubMed
Bouthillier, A. & de Montigny, C. (1987). Long-term antidepressant treatment reduces neuronal responsiveness to flurazepam: an electrophysiological study in the rat. Neuroscience Letters (in the press).CrossRefGoogle Scholar
Bradley, P. B., Engel, G., Feniuk, W., Fozard, J R., Humphrey, P. P A., Middlemiss, D. N., Mylecharane, E. J., Richardson, B. P. & Saxena, P. R. (1986). Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 25, 563576.CrossRefGoogle ScholarPubMed
Briley, M. S., Raisman, R. & Langer, S. Z. (1979). Human platelets possess high-affinity binding sites of 3H-imipramine. European Journal of Pharmacology 58, 347348.CrossRefGoogle ScholarPubMed
Brunello, N., Barbaccia, M. L., Chuang, D.-M. & Costa, E. (1982 a). Down-regulation of β-adrenergic receptors following repeated injections of desmethylimipramine: permissive role of serotonergic axons. Neuropharmacology 21, 11451149.CrossRefGoogle ScholarPubMed
Brunello, N., Chuang, D. M. & Costa, E. (1982 b). Different synaptic location of mianserin and imipramine binding sites. Science 215, 11121115.CrossRefGoogle ScholarPubMed
Burgess, C. D., Turner, P. & Wadsworth, J. (1978). Cardiovascular responses to mianserin hydrochloride: a comparison with tricyclic antidepressant drugs. British Journal of Clinical Pharmacology 5, 21S28S.CrossRefGoogle ScholarPubMed
Caccia, S., Ballabio, M., Samanin, R., Zanini, M. G. & Garattini, S. (1981). m-Chlorophenyl-piperazine, a central 5-hydroxytryptamine agonist, is a metabolite of trazodone. Journal of Pharmacy and Pharmacology 33, 477478.CrossRefGoogle ScholarPubMed
Carli, M., Invernizzi, R., Cervo, L. & Samanin, R. (1987). Neurochemical and behavioural studies with RU-24969 in the rat. Psychopharmacology (in the press).Google Scholar
Carlsson, A. (1976). The contribution of drug research to investigating the nature of endogenous depression. Pharmacopsychiatry Neuropsychopharmacology 9, 210.CrossRefGoogle ScholarPubMed
Cervo, L. & Samanin, R. (1987 a). Potential antidepressant properties of 8-hydroxy-2-(di-n-propylamino) tetralin, a selective serotonin1A receptor agonist. European Journal of Pharmacology 144, 223229.CrossRefGoogle ScholarPubMed
Cervo, L. & Samanin, R. (1987 b). Evidence that dopamine mechanisms in the nucleus accumbens are selectively involved in the effect of desipramine in the forced swimming test. Neuropharmacology 26, 14691472.CrossRefGoogle ScholarPubMed
Cervo, L. & Samanin, R. (1987 c). Repeated treatment with imipramine and amitriptyline reduces rats' immobility in the forced swimming test by enhancing dopamine mechanisms in the nucleus accumbens. Journal of Pharmacy and Pharmacology (in the press).CrossRefGoogle Scholar
Charney, D. S., Menkes, D. B. & Heninger, G. R. (1981 a). Receptor sensitivity and the mechanism of action of antidepressant treatment. Archives of General Psychiatry 38, 11601180.CrossRefGoogle ScholarPubMed
Charney, D. S., Heninger, G. R., Sternberg, D. E., Redmond, D. E., Leckman, J. F., Maas, J. W.& Roth, R. H.(1981 b).Presynaptic adrenergic receptor sensitivity in depression. The effect of longterm desipramine treatment. Archives of General Psychiatry 38, 13341340.CrossRefGoogle ScholarPubMed
Charney, D. S., Price, L. H. & Heninger, G. R. (1986). Desipramineyohimbine combination treatment of refractory depression. Implications for the β-adrenergic receptor hypothesis of antidepressant action. Archives of General Psychiatry 43, 11551161.CrossRefGoogle ScholarPubMed
Charney, D. S., Woods, S. W., Goodman, W. K. & Heninger, G. R. (1987). Serotonin function in anxiety. II. Effects of the serotonin agonist MCPP in panic disorder patients and healthy subjects. Psychopharmacology 92, 1424.CrossRefGoogle ScholarPubMed
Chiodo, L. A. & Antelman, S. M (1980 a). Tricyclic antidepressants induce subsensitivity of presynaptic dopamine autoreceptors. European Journal of Pharmacology 64, 203204.CrossRefGoogle ScholarPubMed
Chiodo, L. A. & Antelman, S. M. (1980 b). Repeated tricyclics induce a progressive dopamine autoreceptor subsensitivity independent of daily drug treatment. Nature 287, 451454.CrossRefGoogle ScholarPubMed
Chouinard, G. (1983). Bupropion and amitriptyline in the treatment of depressed patients. Journal of Clinical Psychiatry 44 suppl., 121129.Google ScholarPubMed
Clements-Jewery, S., Robson, P. A. & Chidley, L. J. (1980). Biochemical investigations into the mode of action of trazodone. Neuropharmacology 19, 11651173.CrossRefGoogle ScholarPubMed
Cooper, J. R., Bloom, F. E. & Roth, R. H. (1978). The Biochemical Basis of Neuropharmacology, 3rd ed., pp. 102160. Oxford University Press: New York.Google Scholar
Coppen, A., Ghose, K., Swade, C. & Wood, K. (1978). Effect of mianserin hydrochloride on peripheral uptake mechanisms for noradrenaline and 5-hydroxytryptamine in man. British Journal of Clinical Pharmacology 5, 13S17S.CrossRefGoogle ScholarPubMed
Costa, E., Garattini, S. & Valzelli, L. (1960). Interactions between reserpine, chlorpromazine, and imipramine. Experientia 16, 461463.CrossRefGoogle ScholarPubMed
Costa, E., Guidotti, A., Mao, C. C. & Suria, A. (1975). New concepts on the mechanism of action of benzodiazepines. Life Sciences 17, 167186.CrossRefGoogle ScholarPubMed
Crews, F. T., Paul, S. M. & Goodwin, F. K. (1981). Acceleration of β-receptor desensitization in combined administration of antidepressants and phenoxybenzamine. Nature 290, 787789.CrossRefGoogle ScholarPubMed
Crow, T. J., Cross, A. J., Cooper, S. J., Deakin, J. F. W., Ferrier, I. N., Johnson, J.A, Joseph, M. H., Owen, F., Poulter, M., Lofthouse, R., Corsellis, J. A. N., Chambers, D. R., Blessed, G., Perry, E. K., Perry, R. H. & Tomlinson, B. E. (1984). Neurotransmitter receptors and monoamine metabolites in the brains of patients with Alzheimer-type dementia and depression, and suicides. Neuropharmacology 23, 15611569.CrossRefGoogle ScholarPubMed
De Gregorio, M. & Dionisio, A. (1971). A controlled clinical study of a new antidepressant (trazodone). Panminerva Medica 13, 2730.Google ScholarPubMed
de Montigny, C. & Blier, P. (1984). Effects of acute and repeated administratin of antidepressant serotonin uptake blockers. Electrophysiological studies in the rat. Advances in Biological Psychiatry, 14, 1932.CrossRefGoogle Scholar
de Montigny, C. & Blier, P. (1985). Electrophysiological aspects of serotonin neuropharmacology: implications for antidepressant treatments. In Neuropharmacology of Serotonin (ed. Green, A. R.), pp. 181195. Oxford University Press: Oxford.Google Scholar
Dencker, S. J., Malm, U., Roos, B.-E. & Werdinius, B. (1966). Acid monoamine metabolites of cerebrospinal fluid in mental depression and mania. Journal of Neurochemistry 13, 15451548.CrossRefGoogle ScholarPubMed
Domenjoz, R. & Theobald, W. (1959). On the pharmacology of tofranil(N-(3-dimethylaminopropyl)-iminodibenzyl) hydrochloride. Archives Internationales de Pharmacodynamie et de Thérapie 120, 450489.Google Scholar
Dumbrille-Ross, A., Tang, S. W. & Seeman, P. (1980). High-affinity binding of [3H]mianserin to rat cerebral cortex. European Journal of Pharmacology 68, 395396.CrossRefGoogle ScholarPubMed
Esposito, E., Ossowska, G. & Samanin, R. (1987). Further evidence that noradrenaline is not involved in the anti-immobility activity of chronic desipramine in the rat. European Journal of Pharmacology 136, 429432.CrossRefGoogle Scholar
Ferris, R. M. & Beaman, O. J. (1983). Bupropion: a new antidepressant drug, the mechanism of action of which is not associated with down-regulation of postsynaptic β-adrenergic, serotonergic (5-HT2), α2-adrenergic, imipramine and dopaminergic receptors in brain. Neuropharmacology 22, 12571267.CrossRefGoogle ScholarPubMed
Ferris, R. M., White, H. L., Cooper, B. R., Maxwell, R. A., Tang, F. L. M., Beaman, O. J. & Russell, A. (1981). Some neurochemical properties of a new antidepressant, bupropion hydrochloride (Wellbutrin(R)). Drug Development Research 1, 2135.CrossRefGoogle Scholar
Fillion, M. P., Robaut, C., Dufois, S., Kan, J. P. & Fillion, G. (1987). Interaction of antidepressants with the binding of [3H] 5HT to the 5HT1 sites. Naunyn-Schmiedebergs Archives of Pharmacology (submitted for publication).Google Scholar
Finnegan, K. T., Terwilliger, M. M., Berger, P. A., Hollister, L. E. & Csernansky, J. G. (1987). A comparison of the neurochemical and behavioral effects of clenbuterol and desipramine. European Journal of Pharmacology 134, 131136.CrossRefGoogle ScholarPubMed
Friedman, E. & Dallob, A. (1979). Enhanced serotonin receptor activity after chronic treatment with imipramine or amitriptyline. Communications in Psychopharmacology 3, 8992.Google ScholarPubMed
Friedman, E., Cooper, T. B. & Dallob, A. (1983). Effects of chronic antidepressant treatment on serotonin receptor activity in mice. European Journal of Pharmacology 89, 6976.CrossRefGoogle ScholarPubMed
Gandolfi, O., Barbaccia, M. L., Chuang, D. M. & Costa, E. (1983). Daily bupropion injections for 3 weeks attenuate the NE-stimulation of adenylate cyclase and the numbers of β-adrenergic recognition sites in rat frontal cortex. Neuropharmacology 22, 927929.CrossRefGoogle ScholarPubMed
Garattini, S. (1974). Biochemical studies with trazodone. A new psychoactive drug. Modern Problems of Pharmacopsychiatry 9, 2946.CrossRefGoogle Scholar
Garattini, S. & Samanin, R. (1984). Drugs: guide and caveats to explanatory and descriptive approaches. I. A critical evaluation of the current status of antidepressant drugs. Journal of Psychiatric Research 18, 373390.CrossRefGoogle Scholar
Garattini, S., Bonaccorsi, A., Jori, A. & Samanin, R. (1972). Monoamines et effets pharmacologiques des drogues antidépressives à structure tricyclique. Revue Neurologique (Paris) 127, 265292.Google Scholar
Garattini, S., Pujol, J. F., Samanin, R. (eds.) (1978). Interactions Between Putative Neurotransmitters in the Brain. Raven Press: New York.Google Scholar
Garcha, G., Smokcum, R. W. J., Stephenson, J. D. & Weeramanthri, T. B. (1985). Effects of some atypical antidepressants on β-adrenoceptor binding and adenylate cyclase activity in the rat forebrain. European Journal of Pharmacology 108, 17.CrossRefGoogle ScholarPubMed
Garcia-Sevilla, J. A., Guimon, J., Garcia-Vallejo, P. & Fuster, M J. (1986). Biochemical and functional evidence of supersensitive platelet α2-adrenoceptors in major affective disorder. Effect of long-term lithium carbonate treatment. Archives of General Psychiatry 43, 5157.CrossRefGoogle Scholar
Garver, D. L. & Davis, J. M. (1979). Biogenic amine hypotheses of affective disorders. Life Sciences 24, 383394.CrossRefGoogle ScholarPubMed
Glowinski, J. & Axelrod, J. (1964). Inhibition of uptake of tritiated-noradrenaline in the intact rat brain by imipramine and structurally related compounds. Nature 204, 13181319.CrossRefGoogle ScholarPubMed
Gobbi, M., Taddei, C. & Mennini, T. (1987). Different components of 3H-imipramine binding in rat brain membranes: relation to serotonin uptake sites. Life Sciences (in the press).Google Scholar
Goodwin, G. M., De Souza, R. J. & Green, A. R.(1987) Attenuation by electroconvulsive shock and antidepressant drugs of the 5-HT1A receptor-mediated hypothermia and serotonin syndrome produced by 8-OH-DPAT in the rat. Psychopharmacology 91, 500505.CrossRefGoogle ScholarPubMed
Gravel, P. & de Montigny, C. (1987). Noradrenergic denervation prevents sensitization of rat forebrain neurons to serotonin by tricyclic antidepressant treatment. Synapse (in the press).CrossRefGoogle Scholar
Green, A. R. & Deakin, J F. W. (1980). Brain noradrenaline depletion prevents ECS-induced enhancement of serotonin- and dopamine-mediated behaviour. Nature 285, 232233.CrossRefGoogle ScholarPubMed
Haefely, W., Kulcsar, A., Mohler, H., Pieri, L., Pole, P. & Schaffner, R. (1975). Possible involvement of GABA in the central actions of benzodiazepines. In Mechanism of Action of Benzodiazepines (ed. Costa, E and Greengard, P.), pp. 131151. Raven Press: New York.Google ScholarPubMed
Hall, H. & Ogren, S.-O. (1981). Effects of antidepressant drugs on different receptors in the brain. European Journal of Pharmacology 70, 393407.CrossRefGoogle ScholarPubMed
Hall, H., Sallemark, M. & Ross, S. B. (1980). Clenbuterol, a central β-adrenoceptor agonist. Acta Pharmacologica et Toxicologica 47, 159160.CrossRefGoogle ScholarPubMed
Hamberger, B. & Tuck, J. R. (1973). Effect of tricyclic antidepressants on the uptake of noradrenaline and 5-hydroxytryptamine by rat brain slices incubated in buffer or human plasma. European Journal of Clinical Pharmacology 5, 229235.CrossRefGoogle Scholar
Hamon, M., Cossery, J.-M., Spampinato, U. & Gozlan, H. (1986). Are there selective ligands for 5-HT1A and 5-HT1B receptor binding sites in brain? Trends in Pharmacological Sciences 7, 336338.CrossRefGoogle Scholar
Henning, M. (1969). Studies on the mode of action of alpha-methyldopa. Acta Physiologica Scandinavica Suppl. 322.Google ScholarPubMed
Holcomb, H. H., Bannon, M.J. & Roth, R. H. (1982). Striatal dopamine autoreceptors uninfluenced by chronic administration of antidepressants European Journal of Pharmacology 82, 173178.CrossRefGoogle ScholarPubMed
Holzbauer, M. & Vogt, M. (1956). Depression by reserpine of the noradrenaline concentration in the hypothalamus of the cat. Journal of Neurochemistry 1, 811.CrossRefGoogle ScholarPubMed
Hoyer, D., Engel, G. & Kalkman, H. O. (1985). Molecular pharmacology of 5-HT1 and 5-HT2 recognition sites in rat and pig brain membranes: radioligand binding studies with [3H]5-HT, [3H]8-OH-DPAT, (–) [125I]iodocyanopindolol, [3H]mesulergine and [3H]ketanserin. European Journal of Pharmacology 118, 1323CrossRefGoogle Scholar
Hrdina, P. D. (1984). Differentiation of two components of specific [3H]-imipramine binding in rat brain European Journal of Pharmacology 102, 481488.CrossRefGoogle ScholarPubMed
Hunt, P., Kannengiesser, M -H & Raynaud, J. P. (1974). Nomifensine: a new potent inhibitor of dopamine uptake into synaptosomes from rat brain corpus striatum. Journal of Pharmacy and Pharmacology 26, 370371CrossRefGoogle ScholarPubMed
Janowsky, A., Okada, F., Manier, D.H, Applegate, C. D., Sulser, F. & Steranka, L. R. (1982). Role of serotonergic input in the regulation of the β-adrenergic receptor-coupled adenylate cyclase system. Science 218, 900901.CrossRefGoogle ScholarPubMed
Kafoe, W. F. & Leonard, B. E. (1973). The effect of a new tetracyclic antidepressant compound, ORG GB94, on the turnover of dopamine, noradrenaline and serotonin in the rat brain. Archives Internationales de Pharmacodynamie el de Thérapie 206, 389391.Google Scholar
Kafoe, W. F., De Ridder, J. J. & Leonard, B. E. (1976). The effect of a tetracyclic antidepressant compound, ORG GB94, on the turnover of biogenic amines in rat brain. Biochemical Pharmacology 25, 24552460.CrossRefGoogle ScholarPubMed
Kametani, H., Nomura, S. & Shimizu, J. (1983). The reversal effect of antidepressants on the escape deficit induced by inescapable shock in rats. Psychopharmacology 80, 206208.CrossRefGoogle ScholarPubMed
Karoum, F., Korpi, E. R., Linnoila, M., Chuang, L -W & Wyatt, R. J. (1984). Reduced metabolism and turnover rates of rat brain dopamine, norepinephrine and serotonin by chronic desipramine and zimelidine treatments. European Journal of Pharmacology 100, 137144.CrossRefGoogle ScholarPubMed
Kendall, D. A. & Nahorski, S. R. (1985). 5-Hydroxytryptamine-stimulated inositol phospholipid hydrolysis in rat cerebral cortex slices: pharmacological characterization and effects of antidepressants. Journal of Pharmacology and Experimental Therapeutics 233, 473479.Google ScholarPubMed
Kennett, G. A., Dourish, C. T. & Curzon, G. (1987). Antidepressant-like action of 5-HT1A agonists and conventional antidepressants in an animal model of depression. European Journal of Pharmacology 134, 265274.CrossRefGoogle ScholarPubMed
Kinnier, W. J., Chuang, D. M. & Costa, E. (1980). Down regulation of dihydroalprenolol and imipramine binding sites in brain of rats repeatedly treated with imipramine. European Journal of Pharmacology 67, 289294.CrossRefGoogle ScholarPubMed
Kitada, Y., Miyauchi, T., Kanazawa, Y., Nakamichi, H. & Satoh, S. (1983). Involvement of α- and β1-adrenergic mechanisms in the immobility-reducing action of desipramine in the forced swimming test. Neuropharmacology 22, 10551060.CrossRefGoogle Scholar
Koe, B. K. & Vinick, F. J. (1984). Adaptive changes in central nervous system receptor systems. In Annual Reports in Medicinal Chemistry, vol. 19 (ed. Bailey, D. M.), pp. 4150. Academic Press: New York.Google Scholar
Kopanski, C., Turck, M. & Schultz, J. E. (1983). Effects of long-term treatment of rats with antidepressants on adrenergic-receptor sensitivity in cerebral cortex: structure activity study. Neurochemistry International 5, 649659.CrossRefGoogle ScholarPubMed
Korf, J. & Venema, K. (1983). Desmethylimipramine enhances the release of endogenous GABA and other neurotransmitter amino acids from the rat thalamus. Journal of Neurochemistry 40, 946950.CrossRefGoogle ScholarPubMed
Kraemer, G. W. & McKinney, W. T. (1979). Interactions of pharmacological agents which alter biogenic amine metabolism and depression – an analysis of contributing factors within a primate model of depression. Journal of Affective Disorders 1, 3354.CrossRefGoogle ScholarPubMed
Kuhn, R. (1958). The treatment of depressive states with G 22355 (imipramine hydrochloride). American Journal of Psychiatry 115, 459464.CrossRefGoogle Scholar
Lahti, R. A., Sethy, V. H., Barsuhn, C. & Hester, J. B. (1983). Pharmacological profile of the antidepressant adinazolam, a triazolobenzodiazepine. Neuropharmacology 22, 12771282.CrossRefGoogle ScholarPubMed
Langer, S. Z., Raisman, R. & Briley, M. (1981). High-affinity (3H)DMI binding is associated with neuronal noradrenaline uptake in the periphery and the central nervous system. European Journal of Pharmacology 72, 423424.CrossRefGoogle Scholar
Lebrecht, U. & Nowak, J. Z. (1980). Effect of single and repeated electroconvulsive shock on serotonergic system in rat brain. II. Behavioural studies. Neuropharmacology 19, 10551061.CrossRefGoogle ScholarPubMed
Lecrubier, Y., Puech, A. J., Jouvent, R., Simon, P. & Widlocher, D. (1980). A beta adrenergic stimulant (salbutamol) versus clomipramine in depression: a controlled study. British Journal of Psychiatry 136, 354358.CrossRefGoogle ScholarPubMed
Lerer, B., Ebstein, R. P. & Belmaker, R. H. (1981). Subsensitivity of human βadrenergic adenylate cyclase after salbutamol treatment of depression. Psychopharmacology 75, 169172.CrossRefGoogle ScholarPubMed
Lidbrink, P., Jonsson, G. & Fuxe, K. (1971). The effect of imipraminelike drugs and antihistamine drugs on uptake mechanisms in the central noradrenaline and 5-hydroxytryptamine neurons. Neuropharmacology 10, 521536.CrossRefGoogle ScholarPubMed
MacNeil, D. A. & Gower, M. (1982). Do antidepressants induce dopamine autoreceptor subsensitivity? Nature 298, 302.CrossRefGoogle Scholar
Maier, S. F. (1984). Learned helplessness and animal models of depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry 8, 435446.CrossRefGoogle ScholarPubMed
Maj, J. & Wedzony, K. (1985). Repeated treatment with imipramine or amitriptyline increases the locomotor response of rats to (+)-amphetamine given into the nucleus accumbens. Journal of Pharmacy and Pharmacology 37, 362364.CrossRefGoogle ScholarPubMed
Maj, J., Mogilnicka, E. & Kordecka, A. (1979). Chronic treatment with antidepressant drugs: potentiation of apomorphine-induced aggressive behaviour in rats. Neuroscience Letters 13, 337341.CrossRefGoogle ScholarPubMed
Maj, J., Gorka, Z., Melzacka, M., Rawlow, A. & Pile, A. (1983). Chronic treatment with imipramine: further functional evidence for the enhanced noradrenergic transmission in flexor reflex activity. Naunyn-Schmiedebergs Archives of Pharmacology 322, 256260.CrossRefGoogle ScholarPubMed
Maj, J., Rogoz, Z., Skuza, G. & Sowinska, H. (1984). Repeated treatment with antidepressant drugs potentiates the locomotor response to (+)-amphetamine. Journal of Pharmacy and Pharmacology 36, 127130.CrossRefGoogle ScholarPubMed
Manier, D. H., Gillespie, D. D., Sanders-Bush, E. & Sulser, F. (1987). The serotonin/noradrenaline-link in brain. I. The role of noradrenaline and serotonin in the regulation of density and function of beta adrenoceptors and its alteration by desipramine. Naunyn-Schmiedebergs Archives of Pharmacology 335, 109114.Google Scholar
Mann, J. J., Brown, R. P., Halper, J. P., Sweeney, J. A., Kocsis, J. H., Stokes, P. E. & Bilezikian, J. P. (1985). Reduced sensitivity of lymphocyte beta-adrenergic receptors in patients with endogenous depression and psychomotor agitation. New England Journal of Medicine 313, 715720.CrossRefGoogle ScholarPubMed
Mann, J. J., Stanley, M., McBride, P. A. & McEwen, B. S. (1986). Increased serotonin2 and β-adrenergic receptor binding in the frontal cortices of suicide victims. Archives of General Psychiatry 43, 954959.CrossRefGoogle ScholarPubMed
Marini, S., Gregori, S. & Lucchetti, G. (1986). Possibilità di impiego di un nuovo bloccante selettivo dei recettori S2 della serotonina: Ritanserin (R 55667). Psychopathologia 4, 4166.Google Scholar
Martin, P., Soubrie, P. & Simon, P. (1986 a). Shuttle-box deficits induced by inescapable shocks in rats: reversal by the betaadrenoreceptor stimulants clenbuterol and salbutamol. Pharmacology, Biochemistry and Behavior 24, 177181.CrossRefGoogle ScholarPubMed
Martin, P., Soubrie, P. & Simon, P. (1986 b). Noradrenergic and opioid mediation of tricyclic-induced reversal of escape deficits caused by inescapable shock pretreatment in rats. Psychopharmacology 90, 9094.CrossRefGoogle ScholarPubMed
Martin-Iverson, M. T., Leclere, J.-F. & Fibiger, H.C. (1983). Cholinergic-dopaminergic interactions and the mechanisms of action of antidepressants. European Journal of Pharmacology 94, 193201.CrossRefGoogle ScholarPubMed
Menkes, D. B., Aghajanian, G. K. & Gallager, D. W. (1983). Chronic antidepressant treatment enhanced agonist affinity of brain α1 adrenoceptors. European Journal of Pharmacology 87, 3541.CrossRefGoogle Scholar
Mennini, T., Gobbi, M., Ponzio, F. & Garattini, S. (1986). Neurochemical effects of buspirone in rat hippocampus: evidence for selective activation of 5HT neurons. Archives Internationales de Pharmacodynamie el de Thérapie 279, 4049.Google ScholarPubMed
Mennini, T., Caccia, S. & Garattini, S. (1987 a). Mechanism of action of anxiolytic drugs. Progress in Drug Research 31, 315347.Google ScholarPubMed
Mennini, T., Mocaer, E. & Garattini, S. (1987 b). Tianeptine, a selective enhancer of serotonin uptake in rat brain. Naunyn-Schmiedebergs Archives of Pharmacology 336, 478482.CrossRefGoogle ScholarPubMed
Meyerson, L. R., Wennogle, L. P., Apel, M. S., Coupet, J., Lippa, A. S., Rauch, C. E. & Beer, B. (1982). Human brain receptor alterations in suicide. Pharmacology, Biochemistry and Behavior 17, 159163.CrossRefGoogle ScholarPubMed
Mishra, R., Janowsky, A. & Sulser, F. (1980). Action of mianserin and zimelidine on the norepinephrine receptor coupled adenylate cyclase system in brain: subsensitivity without reduction in β adrenergic receptor binding. Neuropharmacology 19, 983987.CrossRefGoogle ScholarPubMed
Mobley, P. L. & Sulser, F. (1981). Down-regulation of the central noradrenergic receptor system by antidepressant therapies: biochemical and clinical aspects. In Antidepressants: Neurochemical, Behavioral, and Clinical Perspectives (ed. Enna, S. J., Malick, J. B. and Richelson, E.), pp. 3151. Raven Press: New York.Google Scholar
Nagatani, T., Sugihara, T. & Kodaira, R. (1984). The effect of diazepam and of agents which change GABAergic functions in immobility in mice. European Journal of Pharmacology 97, 271275.CrossRefGoogle ScholarPubMed
Nelson, D. L., Herbet, A., Bourgoin, S., Glowinski, J & Hamon, M. (1978). Characteristics of central 5-HT receptors and their adaptive changes following intracerebral 5, 7-dihydroxytryptamine administration in the rat. Molecular Pharmacology 14, 983995.Google ScholarPubMed
Nemeroff, C. B. & Evans, D. L. (1983). Concurrent use of anti-depressants and propranolol: case report and theoretical considerations. Biological Psychiatry 18, 237241.Google Scholar
Nicholson, P. A. & Turner, P. (eds.) (1977). Proceedings of a symposium on nomifensine. British Journal of Clinical Pharmacology 4, suppl. 2.Google Scholar
Nurse, B., Russell, V. A. & Taljaard, J. J. F. (1985). Effect of chronic desipramine treatment on adrenoceptor modulation of [3H] dopamine release from rat nucleus accumbens slices. Brain Research 334, 235242.CrossRefGoogle ScholarPubMed
Olpe, H.-R. & Schellenberg, A. (1980). Reduced sensitivity of neurons to noradrenaline after chronic treatment with antidepressant drugs. European Journal of Pharmacology 63, 713.CrossRefGoogle ScholarPubMed
Paykel, E. S., Fleminger, R. & Watson, J. P. (1982). Psychiatric side effects of antihypertensive drugs other than reserpine. Journal of Clinical Psychopharmacology 2, 1439.CrossRefGoogle ScholarPubMed
Peroutka, S. J. & Snyder, S. H. (1980). Long-term antidepressant treatment decreases spiroperidol-labellcd serotonin receptor binding. Science 210, 8890.CrossRefGoogle ScholarPubMed
Petrie, W. M., Maffucci, R. J. & Woosley, R. L. (1982). Propranolol and depression. American Journal of Psychiatry 139, 9294.Google ScholarPubMed
Phillips, O. M., Wood, K. M. & Williams, D. C. (1984). Binding of [3H]-imipramine to human platelet membranes with compensation for saturable binding to filters and its implication for binding studies with brain membranes. Journal of Neurochemistry 43, 479486.CrossRefGoogle ScholarPubMed
Pilc, A. & Enna, S. J. (1985). Synergistic interaction between α and β adrenergic receptors in rat brain slices: possible site for antidepressant drug action. Life Sciences 37, 11831194.CrossRefGoogle ScholarPubMed
Pilc, A. & Enna, S. J. (1986). Antidepressant administration has a differential effect on rat brain α2-adrenoceptor sensitivity to agonists and antagonists. European Journal of Pharmacology 132, 277282.CrossRefGoogle Scholar
Pilc, A. & Lloyd, K. G. (1984). Chronic antidepressants and GABA ‘B ’ receptors: a GABA hypothesis of antidepressant drug action. Life Sciences 35, 21492154.CrossRefGoogle ScholarPubMed
Pinder, R. M. (1980). Antidepressants. In Annual Reports in Medicinal Chemistry, vol. 15 (ed. Hess, H.-J.), pp. 111. Academic Press: New York.CrossRefGoogle Scholar
Plaznik, A. & Kostowski, W. (1987). The effects of antidepressants and electroconvulsive shocks on the functioning of the mesolimbic dopaminergic system: a behavioral study. European Journal of Pharmacology 135, 389396.CrossRefGoogle ScholarPubMed
Pletscher, A., Shore, P. A. & Brodie, B. B. (1955). Serotonin release as a possible mechanism of reserpine action. Science 122, 374375.CrossRefGoogle ScholarPubMed
Przegalmski, E., Kordecka-Magiera, A., Mogilnicka, E. & Maj, J. (1981). Chronic treatment with some atypical antidepressants increases the brain level of 3-methoxy-4-hydroxyphenylglycol (MHPG) in rats. Psychopharmacology 74, 187190.CrossRefGoogle Scholar
Pulvirenti, L. & Samanin, R. (1986). Antagonism by dopamine, but not noradrenaline receptor blockers of the anti-immobility activity of desipramine after different treatment schedules in the rat. Pharmacological Research Communications 18, 7380.CrossRefGoogle Scholar
Raisman, R., Briley, M. S. & Langer, S. Z. (1980). Specific tricyclic antidepressant binding sites in rat brain characterised by highaffinity 3H-imipramine binding. European Journal of Pharmacology 61, 373380.CrossRefGoogle ScholarPubMed
Randrup, A. & Braestrup, C. (1977). Uptake inhibition of biogenic amines by newer antidepressant drugs: relevance to the dopamine hypothesis of depression. Psychopharmacology 53, 309314.CrossRefGoogle Scholar
Randrup, A., Munkvad, I., Fog, R., Gerlach, J., Molander, L., Kjellberg, B. & Scheel-Kruger, J. (1975). Mania, depression, and brain dopamine. In Current Developments in Psychopharmacology, vol. 2 (ed. Essman, W. B. and Valzelli, L.), pp. 205248. Spectrum: New York.Google Scholar
Rehavi, M., Skolnick, P., Hulihan, B. & Paul, S. M. (1981). High affinity binding of [3H]desipramine to rat cerebral cortex: relationship to tricyclic antidepressant-induced inhibition of norepinephrine uptake. European Journal of Pharmacology 70, 597599.CrossRefGoogle ScholarPubMed
Renaud, B., Mocaer, E., Weitsch, A. F., Kato, G., Mennini, T. & Garattini, S. (1987). Stimulation of serotonin uptake induced by a new antidepressant. Presented at: ECNP Congress, Brussels, May 7–8.Google Scholar
Reith, M. E. A., Sershen, H., Allen, D. & Lajtha, A. (1983). Highand low-affinity binding of 3H-imipramine in mouse cerebral cortex. Journal of Neurochemistry 40, 389395.CrossRefGoogle Scholar
Riblet, L. A. & Taylor, D. P. (1981). Pharmacology of neurochemistry of trazodone. Journal of Clinical Psychopharmacology 1 suppl., 17S22S.CrossRefGoogle Scholar
Ross, S. B. & Renyi, A. L. (1967). Inhibition of the uptake of tritiated catecholamines by antidepressant and related agents. European Journal of Pharmacology 2, 181186.CrossRefGoogle ScholarPubMed
Roster, Y. (1979). L'emploi de l'amineptine dans le traitement de la dépression. Psychologie Médicale (Paris) 11, 211223.Google Scholar
Samanin, R. & Garattini, S. (1975). The serotonergic system in the brain and its possible functional connections with other aminergic systems. Life Sciences 17, 12011210.CrossRefGoogle ScholarPubMed
Samanin, R., Bernasconi, S. & Garattini, S. (1975). The effect of nomifensine on depletion of brain serotonin and catecholamines induced respectively by fenfluramine and 6-hydroxydopamine in rats. European Journal of Pharmacology 34, 377380.CrossRefGoogle ScholarPubMed
Samanin, R., Jori, A., Bernasconi, S., Morpurgo, E. & Garattini, S. (1977). Biochemical and pharmacological studies on amineptine (S 1694) and (+)-amphetamine in the rat. Journal of Pharmacy and Pharmacology 29, 555558.CrossRefGoogle ScholarPubMed
Samanin, R., Mennini, T., Ferraris, A., Bendotti, C., Borsini, F. & Garattini, S. (1979). m-Chlorophenylpiperazine: a central serotonin agonist causing powerful anorexia in rats. Naunyn-Schmiedebergs Archives of Pharmacology 308, 159163.CrossRefGoogle ScholarPubMed
Schwabe, U. & Daly, J. W. (1977). The role of calcium ions in accumulations of cyclic adenosine monophosphate elicited by alpha and beta adrenergic agonists in rat brain slices. Journal of Pharmacology and Experimental Therapeutics 202, 134143.Google ScholarPubMed
Schwartz, J.C., Costentin, J., Martres, M. P., Protais, P. & Baudry, M. (1978). Modulation of receptor mechanisms in the CNS: hyperand hyposensitivity to catecholamines. Neuropharmacology 17, 665685.CrossRefGoogle Scholar
Schweizer, E. E., Amsterdam, J., Rickels, K., Kap an, M. & Droba, M. (1986). Open trial of buspirone in the treatment of major depressive disorder. Psychopharmacology Bulletin 11, 183185.Google Scholar
Scott, J. A. & Crews, F. T. (1983). Rapid decrease in rat brain beta adrenergic receptor binding during combined antidepressant alpha-2 antagonist treatment. Journal of Pharmacology and Experimental Therapeutics 224, 640646.Google ScholarPubMed
Selikoff, I. J., Robitzek, E. H. & Ornstein, G. G. (1952). Toxicity of hydrazine derivatives of isonicotinic acid in the chemotherapy of human tuberculosis. Quarterly Bulletin of the Sea View Hospital 13, 1726.Google Scholar
Serra, G., Argiolas, A., Klimek, V., Fadda, F. & Gessa, G. L. (1979). Chronic treatment with antidepressants prevents the inhibitory effect of small doses of apomorphine on dopamine synthesis and motor activity. Life Sciences 25, 415424.CrossRefGoogle ScholarPubMed
Sethy, V. H. & Hodges, D. H. Jr. (1982). Role of β-adrenergic receptors in the antidepressant activity of alprazolam. Research Communications in Chemical Pathology and Pharmacology 36, 329332.Google ScholarPubMed
Sette, M., Raisman, R., Briley, M. & Langer, S. Z. (1981). Localisation of tricyclic antidepressant binding sites on serotonin nerve terminals. Journal of Neurochemistry 37, 4042.CrossRefGoogle ScholarPubMed
Shaw, D. M., Riley, G. J., Michalakeas, A.C., Tidmarsh, S. F., Blazek, R. & Johnson, A. L. (1977). New direction to the amine hypothesis. Lancet i, 12591260.CrossRefGoogle Scholar
Shephard, R. A. (1987). Behavioral effects of GABA agonists in relation to anxiety and benzodiazepine action. Life Sciences 40, 24292436.CrossRefGoogle ScholarPubMed
Sherman, A. D. & Petty, F. (1980). Neurochemical basis of the action of antidepressants on learned helplessness. Behavioral and Neural Biology 30, 119134.CrossRefGoogle ScholarPubMed
Shopsin, B. (1983). Bupropion's prophylactic efficacy in bipolar affective illness. Journal of Clinical Psychiatry 44 suppl., 163169.Google ScholarPubMed
Shopsin, B., Gershon, S., Goldstein, M., Friedman, E. & Wilk, S. (1975). Use of synthesis inhibitors in defining a role for biogenic amines during imipramine treatment in depressed patients. Psychopharmacological Communications 1, 239249.Google ScholarPubMed
Siever, L J., Uhde, T. W., Jimerson, D.C., Lake, C. R., Silberman, E. R., Post, R. M. & Murphy, D L. (1984). Differential inhibitory noradrenergic responses to clonidine in 25 depressed patients and 25 normal control subjects. American Journal of Psychiatry 141, 733741.Google ScholarPubMed
Soubrie, P., Martin, P., El Mestikawy, S., Thiebot, M. H., Simon, P. & Hamon, M. (1986). The lesion of serotonergic neurons does not prevent antidepressant-induced reversal of escape failures produced by inescapable shocks in rats. Pharmacology, Biochemistry and Behavior 25, 16.CrossRefGoogle Scholar
Spyraki, C. & Fibiger, H. C. (1981). Behavioural evidence for supersensitivity of postsynaptic dopamine receptors in the mesolimbic system after chronic administration of desipramine. European Journal of Pharmacology 74, 195206.CrossRefGoogle ScholarPubMed
Stahl, S. M. (1984). Regulation of neurotransmitter receptors by desipramine and other antidepressant drugs: the neurotransmitter receptor hypothesis of antidepressant action. Journal of Clinical Psychiatry 45, 3745.Google ScholarPubMed
Stahl, S. M. & Palazidou, L. (1986). The pharmacology of depression: studies of neurotransmitter receptors lead the search for biochemical lesions and new drug therapies. Trends in Pharmacological Sciences 7, 349354.CrossRefGoogle Scholar
Stanley, M., Virgilio, J. & Gershon, S. (1982). Tritiated imipramine binding sites are decreased in the frontal cortex of suicides. Science 216, 13371338CrossRefGoogle ScholarPubMed
Stolz, J. F., Marsden, C. A. & Middlemiss, D. N. (1983). Effect of chronic antidepressant treatment and subsequent withdrawal on [3H]-5-hydroxytryptamine and [3H]-spiperone binding in rat frontal cortex and serotonin receptor mediated behaviour. Psychopharmacology 80 150155.CrossRefGoogle ScholarPubMed
Stone, E. A. & Platt, J. E. (1982). Brain adrenergic receptors and resistance to stress. Brain Research 237, 405414.CrossRefGoogle ScholarPubMed
Sugrue, M. F. (1982). Effect of chronic antidepressants on rat brain α2-adrenoceptorsensitivity. In Typical and Atypical Antidepressants: Molecular Mechanisms (ed. Costa, E. and Racagni, G.), pp. 5562. Raven Press. New York.Google Scholar
Sugrue, M. F. (1983). Do antidepressants possess a common mechanism of action? Biochemical Pharmacology 32, 18111817.CrossRefGoogle ScholarPubMed
Sulser, F. (1979). New perspectives on the mode of action of antidepressant drugs. Trends in Pharmacological Sciences 1, 9294.CrossRefGoogle Scholar
Sulser, F., Bickel, M. H. & Brodie, B. B. (1964). The action of desmethylimipramine in counteracting sedation and cholinergic effects of reserpine-like drugs. Journal of Pharmacology and Experimental Therapeutics 144, 321330.Google Scholar
Suranyi-Cadotte, B. E., Dam, T. V. & Quirion, R. (1984). Antidepressant- anxiolytic interaction: decreased density of benzodiazepine receptors in rat brain following chronic administration of antidepressants. European Journal of Pharmacology 106, 673675.CrossRefGoogle ScholarPubMed
Suzdak, P. D. & Gianutsos, G. (1985). Parallel changes in the sensitivity of γ-aminobutyric acid and noradrenergic receptors following chronic administration of antidepressant and GABA-ergic drugs. A possible role in affective disorders. Neuropharmacology 24, 217222.CrossRefGoogle Scholar
Suzdak, P. D. & Gianutsos, G. (1986). Effect of chronic imipramine or baclofen on GABA-B binding and cyclic AMP production in cerebral cortex. European Journal of Pharmacology 131, 129133.CrossRefGoogle ScholarPubMed
Taylor, K. M. & Laverty, R. (1969). The effect of chlordiazepoxide, diazepam and nitrazepam on catecholamine metabolism in regions of the rat brain. European Journal of Pharmacology 8, 296301.CrossRefGoogle ScholarPubMed
Thompson, C., Checkley, S. A., Corn, T., Franey, C. & Arendt, J. (1983). Down-regulation at pineal β-adrenoceptors in depressed patients treated with desipramine? Lancet i, 1101.CrossRefGoogle Scholar
Towell, A., Willner, P. & Muscat, R. (1986). Dopamine autoreceptors in the ventral tegmental area show subsensitivity following withdrawal from chronic antidepressant drug treatment Psychopharmacology 90, 6471.CrossRefGoogle ScholarPubMed
van Praag, H. M. (1983). In search of the mode of action of antidepressants 5-HTP/tyrosine mixtures in depressions. Neuropharmacology 22, 433440.CrossRefGoogle ScholarPubMed
van Praag, H. M. & Korf, J. (1971). Retarded depression and the dopamine metabolism. Psychopharmacologia 19, 199203.CrossRefGoogle Scholar
van Zwieten, P. A. (1977). Inhibition of the central hypotensive effect of clonidine by trazodone, a novel antidepressant. Pharmacology 15, 331336.CrossRefGoogle ScholarPubMed
Von Voigtlander, P. F., Triezenberg, H. J. & Losey, E. G. (1978). Interactions between clonidine and antidepressant drugs a method for identifying antidepressant-Iike agents Neuropharmacology 17, 375381.CrossRefGoogle ScholarPubMed
Weiss, C., Gorceix, A., Kindynis, S. & Dimitriu, M. (1981). Etude contrôlée à double insu versus nomifensine de l'activité et du délai d'action d'un nouvel antidépresseur la tianeptine. In Biological Psychiatry (ed. Perns, C., Struwe, G. and Jansson, B.), pp. 593596. Elsevier: Amsterdam.Google Scholar
Weiss, J. M. & Simson, P. G. (1985). Neurochemical basis of stressinduced depression. Psychopharmacology Bulletin 21, 447457.Google ScholarPubMed
Welch, J., Kim, H., Fallon, S. & Liebman, J. (1982). Do antidepressants induce dopamine autoreceptor subsensitivity? Nature 298, 301302.CrossRefGoogle Scholar
White, F. J. & Wang, R. Y. (1983). Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons. Science 221, 10541057.CrossRefGoogle ScholarPubMed
Willner, P. (1983 a). Dopamine and depression: a review of recent evidence. I. Empirical studies. Brain Research 287, 211224.CrossRefGoogle ScholarPubMed
Willner, P. (1983 b). Dopamine and depression: a review of recent evidence. III. The effects of antidepressant treatments. Brain Research 287, 237246.CrossRefGoogle ScholarPubMed
Willner, P. (1984). The ability of antidepressant drugs to desensitize beta-receptors is inversely correlated with their clinical potency. Journal of Affective Disorders 7, 5358.CrossRefGoogle ScholarPubMed
Yavin, Z., Biegon, A., Segal, M. & Samuel, D. (1978). The in vivo binding of [3H]-chlorpromazine to areas in the rat brain. European Journal of Pharmacology 51, 121127.CrossRefGoogle ScholarPubMed
Zemlan, F. P., Kow, L.-M. & Pfaff, D. W. (1983). Spinal serotonin (5-HT) receptor subtypes and nociception. Journal of Pharmacology and Experimental Therapeutics 226, 477485.Google ScholarPubMed
Zis, A. P. & Goodwin, F. K. (1979). Novel antidepressants and the biogenic amine hypothesis of depression: the case for iprindole and miansenn Archives of General Psychiatry 36, 10971107.CrossRefGoogle Scholar