Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T13:13:31.872Z Has data issue: false hasContentIssue false

Brain chemistry and behaviour1

Published online by Cambridge University Press:  09 July 2009

Susan D. Iversen*
Affiliation:
Department of Experimental Psychology, Cambridge
*
1Address for correspondence: Dr S. D. Iversen, Department of Experimental Psychology, Downing Street, Cambridge.

Synopsis

The functional organization of chemically transmitting synapses in the brain are described with special emphasis on recent studies demonstrating the localization of different transmitters to specific anatomical circuitries. The use of pharmacological tools for manipulating levels of chemical transmitters is referred to briefly, but particular attention is given to the problems of studying the function of these pathways with lesion techniques.

Noradrenaline (NA) and dopamine (DA) are selected for detailed consideration and experimental evidence reviewed, suggesting that these two catecholamines in the forebrain serve different functions: NA with processes of attention essential for learning, and DA with the execution of appropriate responses. Hypotheses suggesting dysfunction of forebrain DA and NA systems in schizophrenia are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

This paper is based on a guest lecture delivered at University College, London, in December 1977.

References

Agid, Y., Javoy, F. & Glowinski, J. (1973). Hyperactivity of remaining DA neurons after partial destruction of the nigrostriatal DA system in the rat. Nature 245, 150151.Google Scholar
Antelman, S. M. & Caggiula, A. R., (1977). Norepinephrine-dopamine interactions and behavior. Science 195, 646653.CrossRefGoogle ScholarPubMed
Breese, G. R. (1975). Chemical and immunochemical lesions by specific neurotoxic substances and antisera. In Handbook of Psychopharmacology Vol. 1 (ed. Iversen, L. L., Iversen, S. D. and Snyder, S. H.), pp. 137174. Plenum Press: New York.Google Scholar
Brook, C. & Iversen, S. D. (1975). Changed eating and locomotor behaviour in the rat after 6-hydroxydopamine lesions to the substantia nigra. Neuropharmacology 14, 95105.CrossRefGoogle ScholarPubMed
Creese, I., Burt, D. R. & Snyder, S. H. (1977). Dopamine receptor binding enhancement accompanies lesion-induced behavioral supersensitivity. Science 197, 596598.CrossRefGoogle ScholarPubMed
Creese, I., Burt, D. R. & Snyder, S. H. (1978). Biochemical actions of neuroleptic drugs: focus on the dopamine receptor. In Handbook of Psychopharmacology Vol. 10 (ed. Iversen, L. L., Iversen, S. D. and Snyder, S. H.), pp. 3789. Plenum Press: New York.CrossRefGoogle Scholar
Cuello, A. C. (1978). Immunocytochemical studies of the distribution of neurotransmitters and related substances in CNS. In Handbook of Psychopharmacology Vol. 9 (ed. Iversen, L. L., Iversen, S. D. and Snyder, S. H.), pp. 69137. Plenum Press: New York.Google Scholar
Di Chiara, G., Porceddu, M. L., Morelli, M., Mulas, M. L. & Gessa, G. L. (1978). Strio-nigral and nigro-thalamic GABA-ergic neurons as output pathways for striatal responses. GABA-Neurotransmitters. Alfred Benzon Symposium 12, pp. 465481. Munksgaard: Copenhagen.Google Scholar
Divac, I., Rosvold, H. E. & Szwarcbart, M. K. (1967). Behavioral effects of selective ablation of the caudate nucleus. Journal of Comparative and Physiological Psychology 63, 184190.CrossRefGoogle ScholarPubMed
Eichler, A. J. & Antelman, S. M. (1979). Sensitization to amphetamine and stress may involve nucleus accumbens and medial frontal cortex. Brain Research 176, 412416.CrossRefGoogle ScholarPubMed
Ellison, G., Eison, M. S. & Huberman, H. S. (1978). Stages of constant amphetamine intoxication: delayed appearance of abnormal social behaviors in rat colonies. Psychopharmacology 56, 293299.CrossRefGoogle ScholarPubMed
Emson, P. C. & Koob, G. F. (1978). The origin and distribution of dopamine-containing afferents to the rat cortex. Brain Research 142, 249267.CrossRefGoogle Scholar
Galey, D., Simon, H. & Le, Moal M. (1977). Behavioral effects of lesions in the A10 dopaminergic area of the rat. Brain Research 124, 8397.CrossRefGoogle ScholarPubMed
Gray, J. A. (1977). Drug effects on fear and frustration: possible limbic site of action of minor tranquilizers. In Handbook of Psychopharmacology Vol. 8 (ed. Iversen, L. L., Iversen, S. D. and Snyder, S. H.), pp. 433529. Plenum Press: New York.Google Scholar
Huberman, H., Eison, M. S., Bryan, K. & Ellison, G. (1977). A slow-release silicone pellet for chronic amphetamine administration. European Journal of Pharmacology 45, 237242.CrossRefGoogle ScholarPubMed
Iversen, S. D. (1979). Behaviour after neostriatal lesions in animals. In The Neostriatum (ed. Divac, I. and Oberg, R. G. E.), pp. 195210. Pergamon Press: Oxford.CrossRefGoogle Scholar
Iversen, S. D. & Fray, P. J. (1980). Brain catecholamine in relation to affect. In The Neural Basis of Behaviour (ed. Beckman, A.). Spectrum Publications: New York. In the press.Google Scholar
Iversen, S. D. & Iversen, L. L. (1975). Chemical pathways in the brain. In Handbook of Psychobiology (ed. Iversen, S. D. and Iversen, L. L.), pp. 141152. Academic Press: New York.CrossRefGoogle Scholar
Jones, B. & Moore, R. Y. (1977). Ascending projections of the locus coeruleus in the rat. II. Utoradiographic study. Brain Research 127, 2353.CrossRefGoogle Scholar
Julou, L., Scatton, B. & Glowinski, J. (1977). Acute and chronic treatment with neuroleptics: similarities and differences in their action on nigrostriatal mesolimbic, and mesocortical dopaminergic neurons. In Advances in Biochemical Psychopharmacology Vol. 16 (ed. Costa, E. and Gessa, G. L.), pp. 617624. Raven Press: New York.Google Scholar
Kelly, P. H., Seviour, P. W. & Iversen, S. D. (1975). Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Research 94, 507522.CrossRefGoogle ScholarPubMed
Kety, S. S. (1970). The biogenic amines in the central nervous system: their possible roles in arousal, emotion and learning. In The Neurosciences (ed. Schmitt, F. O.), pp. 329336. Rockefeller University Press: New York.Google Scholar
Klawans, H. L. & Margolin, D. I. (1975). Amphetamine induces dopaminergic hypersensitivity in guinea pigs. Archives of General Psychiatry 32, 725732.CrossRefGoogle ScholarPubMed
Leviel, V., Cheramy, A. & Glowinski, J. (1979). Role of the dendritic release of dopamine in the reciprocal control of the two nigro-striatal dopaminergic pathways. Nature 280, 236239.CrossRefGoogle ScholarPubMed
Lewis, P. R. & Shute, C. C. D. (1978). Cholinergic pathways in CNS. In Handbook of Psychoparmacology Vol. 9 (ed. Iversen, L. L., Iversen, S. D. and Snyder, S. H.), pp. 315355. Plenum Press: New York.Google Scholar
Marshall, J. F. & Gotthelf, T. (1979). Sensory inattention in rats with 6-hydroxy-dopamine induces degeneration of ascending dopaminergic neurons: apomorphine-induced reversal of deficits. Experimental Neurology 65, 398411.CrossRefGoogle Scholar
Mason, S. T. & Iversen, S. D. (1979). Theories of the dorsal bundle extinction effect. Brain Research Reviews 1, 107137.CrossRefGoogle Scholar
Moore, R. Y., Bjöklund, A. & Stenevi, U. (1971). Plastic changes in the adrenergic innervation of the rat septal area in response to denervation. Brain Research 33, 1335.CrossRefGoogle ScholarPubMed
Nelson, L. R. & Ellison, G. (1978). Enhanced stereotypies after repeated injections but not Continuous amphetamines. Neuropharmacology 17, 10811084.CrossRefGoogle Scholar
Oades, R. D. & Isaacson, R. L. (1978). The development of food search behavior by rats: the effects of hippocampal damage and haloperidol. Behavioural Biology 24, 327337.CrossRefGoogle ScholarPubMed
Raisman, G. (1969). Neuronal plasticity in the septal nuclei of the adult rat. Brain Research 14, 2548.CrossRefGoogle ScholarPubMed
Schultz, W. & Ungerstedt, U. (1978). Short-term increase and long-term reversion of striatal cell activity after degeneration of the nigrostriatal dopamine system. Experimental Brain Research 33, 159171.CrossRefGoogle ScholarPubMed
Schwartz, J. C., Costentin, J., Martres, M. P., Protais, P. & Baudry, M. (1978). Modulation of receptor mechanisms in the CNS: hyper- and hyposensitivity to catecholamines. Neuropharmacologia 17, 665685.CrossRefGoogle ScholarPubMed
Segal, M. & Bloom, F. E. (1976 a). The action of norepinephrine in the rat hippocampus. I. Iontophoretic studies. Brain Research 72, 7997.CrossRefGoogle Scholar
Segal, M. & Bloom, F. E. (1976 b). The action of norepinephrine in the rat hippocampus. II. Activation of the input pathway. Brain Research 72, 98114.Google Scholar
Stein, L., Belluzzi, J. D. & Wise, C. D. (1975). Memory enhancement by central administration of norepinephrine. Brain Research 84, 329335.CrossRefGoogle ScholarPubMed
Stinus, L., Gaffori, O., Simon, H. & Le, Moal M. (1978). Disappearance of hoarding and disorganization of eating behavior after ventral mesencephalic tegmentum lesions in rats. Journal of Comparative and Physiological Psychology 92 (2), 289296.CrossRefGoogle ScholarPubMed
Tassin, J. P., Lavielle, S., Simon, H., Blanc, G., Thierry, A. M., Alvarez, B., Berger, B. & Glowinski, J. (1979). Collateral sprouting and reduced activity of the rat mesocortical dopaminergic neurons after selective destruction of the ascending noradrenergic bundles. Neuroscience 4, 15691582.CrossRefGoogle ScholarPubMed
Thierry, A. M., Javoy, F., Glowinski, J. & Kety, S. S. (1968). Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat. Journal of Pharmacology and Experimental Therapeutics 163, 163171.Google Scholar
Thierry, A. M., Tassin, J. P., Blanc, G. & Glowinski, J. (1976). Selective activation of the mesocortical DA system by stress. Nature 263, 242243.CrossRefGoogle ScholarPubMed
Thierry, A. M., Tassin, J. P., Blanc, G., Stinus, L., Scatton, B. & Glowinski, J. (1977). Discovery of the mesocortical dopaminergic system: some pharmacological and functional characteristics. In Advances in Biochemical Psychophomacology Vol. 16 (ed. Costa, E. and Gessa, O. L.), pp. 512. Raven Press: New York.Google Scholar
Tulloch, I. F., Arbuthnott, G. W., Wright, A. K., GarciaMunoz, M. & Nicolaou, N. M. (1978). The striatonigral fibres and the feedback control of dopamine metabolism. Psychological Medicine 8, 471482.CrossRefGoogle ScholarPubMed
Ungerstedt, U. (1971 a). Stereotaxic mapping of the monoamine pathways in the rat brain. Acta physiologica scandinvanica suppl. 367.CrossRefGoogle Scholar
Ungerstedt, U. (1971 b). Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour. Acta physiologica scandinavica suppl. 367.CrossRefGoogle Scholar