Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T03:27:47.947Z Has data issue: false hasContentIssue false

Long-term behavioural rewriting of maladaptive drinking memories via reconsolidation-update mechanisms

Published online by Cambridge University Press:  16 June 2020

Grace Gale
Affiliation:
Clinical, Educational and Health Psychology, UCL, 26 Bedford Way, LondonWC1H 0AP, UK
Katie Walsh
Affiliation:
Clinical, Educational and Health Psychology, UCL, 26 Bedford Way, LondonWC1H 0AP, UK
Vanessa E. Hennessy
Affiliation:
Clinical, Educational and Health Psychology, UCL, 26 Bedford Way, LondonWC1H 0AP, UK
L. E. Stemerding
Affiliation:
Clinical, Educational and Health Psychology, UCL, 26 Bedford Way, LondonWC1H 0AP, UK
Koa Sher Ni
Affiliation:
Clinical, Educational and Health Psychology, UCL, 26 Bedford Way, LondonWC1H 0AP, UK
Emily Thomas
Affiliation:
Clinical, Educational and Health Psychology, UCL, 26 Bedford Way, LondonWC1H 0AP, UK
Sunjeev K. Kamboj
Affiliation:
Clinical, Educational and Health Psychology, UCL, 26 Bedford Way, LondonWC1H 0AP, UK
Ravi K. Das*
Affiliation:
Clinical, Educational and Health Psychology, UCL, 26 Bedford Way, LondonWC1H 0AP, UK
*
Author for correspondence: Ravi K. Das, E-mail: ravi.das@ucl.ac.uk

Abstract

Background

Alcohol use disorders can be conceptualised as a learned pattern of maladaptive alcohol-consumption behaviours. The memories encoding these behaviours centrally contribute to long-term excessive alcohol consumption and are therefore an important therapeutic target. The transient period of memory instability sparked during memory reconsolidation offers a therapeutic window to directly rewrite these memories using targeted behavioural interventions. However, clinically-relevant demonstrations of the efficacy of this approach are few. We examined key retrieval parameters for destabilising naturalistic drinking memories and the ability of subsequent counterconditioning to effect long-term reductions in drinking.

Methods

Hazardous/harmful beer-drinking volunteers (N = 120) were factorially randomised to retrieve (RET) or not retrieve (No RET) alcohol reward memories with (PE) or without (No PE) alcohol reward prediction error. All participants subsequently underwent disgust-based counterconditioning of drinking cues. Acute responses to alcohol were assessed pre- and post-manipulation and drinking levels were assessed up to 9 months.

Results

Greater long-term reductions in drinking were found when counterconditioning was conducted following retrieval (with and without PE), despite a lack of short-term group differences in motivational responding to acute alcohol. Large variability in acute levels of learning during counterconditioning was noted. ‘Responsiveness’ to counterconditioning predicted subsequent responses to acute alcohol in RET + PE only, consistent with reconsolidation-update mechanisms.

Conclusions

The longevity of behavioural interventions designed to reduce problematic drinking levels may be enhanced by leveraging reconsolidation-update mechanisms to rewrite maladaptive memory. However, inter-individual variability in levels of corrective learning is likely to determine the efficacy of reconsolidation-updating interventions and should be considered when designing and assessing interventions.

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agustina López, M., Jimena Santos, M., Cortasa, S., Fernández, R. S., Carbó Tano, M., & Pedreira, M. E. (2016). Different dimensions of the prediction error as a decisive factor for the triggering of the reconsolidation process. Neurobiology of Learning and Memory, 136, 210219. https://doi.org/10.1016/j.nlm.2016.10.016.CrossRefGoogle ScholarPubMed
Anton, R. F., Moak, D. H., & Latham, P. (1995). The obsessive compulsive drinking scale: A self-rated instrument for the quantification of thoughts about alcohol and drinking behavior. Alcoholism: Clinical and Experimental Research, 19(1), 9299. https://doi.org/10.1111/j.1530-0277.1995.tb01475.x.CrossRefGoogle ScholarPubMed
Baker, K. D., McNally, G. P., & Richardson, R. (2013). Memory retrieval before or after extinction reduces recovery of fear in adolescent rats. Learning and Memory, 20(9), 467473. https://doi.org/10.1101/lm.031989.113.CrossRefGoogle ScholarPubMed
Beck, A. T., Steer, R. A., & Carbin, M. G. (1988). Psychometric properties of the Beck Depression Inventory: Twenty-five years of evaluation. Clinical Psychology Review, 8(1), 77100.CrossRefGoogle Scholar
Chen, S., Cai, D., Pearce, K., Sun, P. Y. W., Roberts, A. C., & Glanzman, D. L. (2014). Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia. ELife, 3, e03896. https://doi.org/10.7554/eLife.03896.CrossRefGoogle ScholarPubMed
Clem, R. L., & Huganir, R. L. (2010). Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science (New York, N.Y.), 330(6007), 11081112.CrossRefGoogle ScholarPubMed
Das, R. K., Gale, G., Hennessy, V., & Kamboj, S. K. (2018a). A prediction error-driven retrieval procedure for destabilizing and rewriting maladaptive reward memories in hazardous drinkers. Journal of Visualized Experiments, 56097(131), e56097e56097. https://doi.org/10.3791/56097.Google Scholar
Das, R. K., Gale, G., Walsh, K., Hennessy, V. E., Iskandar, G., Mordecai, L. A., … Kamboj, S. K. (2019). Ketamine can reduce harmful drinking by pharmacologically rewriting drinking memories. Nature Communications, 10(1), 5187. https://doi.org/10.1038/s41467-019-13162-w.CrossRefGoogle ScholarPubMed
Das, R. K., Lawn, W., & Kamboj, S. K. (2015). Rewriting the valuation and salience of alcohol-related stimuli via memory reconsolidation. Translational Psychiatry, 5(9), e645e645. https://doi.org/10.1038/tp.2015.132.CrossRefGoogle ScholarPubMed
Das, R. K., Walsh, K., Hannaford, J., Lazzarino, A. I., & Kamboj, S. K. (2018b). Nitrous oxide may interfere with the reconsolidation of drinking memories in hazardous drinkers in a prediction-error-dependent manner. European Neuropsychopharmacology, 28(7), 828840. https://doi.org/10.1016/j.euroneuro.2018.05.001.CrossRefGoogle Scholar
Drummond, D. C., Cooper, T., & Glautier, S. P. (1990). Conditioned learning in alcohol dependence: Implications for cue exposure treatment. British Journal of Addiction, 85(6), 725743.CrossRefGoogle ScholarPubMed
Duffy, V. B., & Bartoshuk, L. M. (2000). Food acceptance and genetic variation in taste. Journal of the American Dietetic Association, 100(6), 647655. https://doi.org/10.1016/S0002-8223(00)00191-7.CrossRefGoogle ScholarPubMed
Elsey, J. W. B., & Kindt, M. (2017). Breaking boundaries: Optimizing reconsolidation-based interventions for strong and old memories. Learning & Memory (Cold Spring Harbor, N.Y.), 24(9), 472479. https://doi.org/10.1101/lm.044156.116.CrossRefGoogle ScholarPubMed
Exton-McGuinness, M. T. J., Lee, J. L. C., & Reichelt, A. C.. (2015). Updating memories-the role of prediction errors in memory reconsolidation. Behavioural brain research, 278, 375384. https://doi.org/10.1016/j.bbr.2014.10.011.CrossRefGoogle Scholar
Fromme, K., Stroot, E. A., & Kaplan, D. (1993). Comprehensive effects of alcohol: Development and psychometric assessment of a new expectancy questionnaire. Psychological Assessment, 5(1), 1926. https://doi.org/10.1037/1040-3590.5.1.19.CrossRefGoogle Scholar
Germeroth, L. J., Carpenter, M. J., Baker, N. L., Froeliger, B., LaRowe, S. D., & Saladin, M. E. (2017). Effect of a brief memory updating intervention on smoking behavior. JAMA Psychiatry, 74(3), 214. https://doi.org/10.1001/jamapsychiatry.2016.3148.CrossRefGoogle ScholarPubMed
Goltseker, K., Bolotin, L., & Barak, S. (2017). Counterconditioning during reconsolidation prevents relapse of cocaine memories. Neuropsychopharmacology, 42(3), 716726. https://doi.org/10.1038/npp.2016.140.CrossRefGoogle ScholarPubMed
Grant, B. F., Chou, S. P., Saha, T. D., Pickering, R. P., Kerridge, B. T., Ruan, W. J., … Hasin, D. S. (2017). Prevalence of 12-month alcohol use, high-risk drinking, and DSM-IV alcohol use disorder in the United States, 2001–2002 to 2012–2013. JAMA Psychiatry, 74(9), 911. https://doi.org/10.1001/jamapsychiatry.2017.2161.CrossRefGoogle ScholarPubMed
Hon, T., Das, R. K., & Kamboj, S. K. (2016). The effects of cognitive reappraisal following retrieval-procedures designed to destabilize alcohol memories in high-risk drinkers. Psychopharmacology, 233(5), 851861. https://doi.org/10.1007/s00213-015-4164-y.CrossRefGoogle ScholarPubMed
Hyman, S. E. (2005). Addiction: A disease of learning and memory. American Journal of Psychiatry, 162(8), 14141422.CrossRefGoogle ScholarPubMed
Hyman, S. E., & Malenka, R. C. (2001). Addiction and the brain: The neurobiology of compulsion and its persistence. Nature Reviews Neuroscience, 2(10), 695703.CrossRefGoogle ScholarPubMed
Krawczyk, M. C., Fernández, R. S., Pedreira, M. E., & Boccia, M. M. (2017). Toward a better understanding on the role of prediction error on memory processes: From bench to clinic. Neurobiology of Learning and Memory, 142(Part A), 1320. https://doi.org/10.1016/j.nlm.2016.12.011.CrossRefGoogle Scholar
Luyten, L., & Beckers, T. (2017). A preregistered, direct replication attempt of the retrieval-extinction effect in cued fear conditioning in rats. Neurobiology of Learning and Memory, 144, 208215. https://doi.org/10.1016/j.nlm.2017.07.014.CrossRefGoogle ScholarPubMed
Merlo, E., Bekinschtein, P., Jonkman, S., & Medina, J. H. (2015). Molecular mechanisms of memory consolidation, reconsolidation, and persistence. Neural Plasticity, 2015, 12. https://doi.org/10.1155/2015/687175.CrossRefGoogle ScholarPubMed
Merlo, E., Milton, A. L., & Everitt, B. J. (2018). A novel retrieval-dependent memory process revealed by the arrest of ERK1/2 activation in the basolateral amygdala. The Journal of Neuroscience, 38(13), 31993207. https://doi.org/10.1523/JNEUROSCI.3273-17.2018.CrossRefGoogle ScholarPubMed
Merlo, E., Milton, A. L., Goozee, Z. Y., Theobald, D. E., & Everitt, B. J. (2014). Reconsolidation and extinction are dissociable and mutually exclusive processes: Behavioral and molecular evidence. Journal of Neuroscience, 34(7), 24222431. https://doi.org/10.1523/JNEUROSCI.4001-13.2014.CrossRefGoogle ScholarPubMed
Miller, W. R., & Tonigan, J. S. (1996). Assessing drinkers’ motivation for change: The Stages of Change Readiness and Treatment Eagerness Scale (SOCRATES). Psychology of Addictive Behaviors, 10(2), 8189. https://doi.org/10.1037/0893-164X.10.2.81.CrossRefGoogle Scholar
Milton, A. L., & Everitt, B. J. (2012). The persistence of maladaptive memory: Addiction, drug memories and anti-relapse treatments. Neuroscience & Biobehavioral Reviews, 36(4), 11191139. https://doi.org/10.1016/j.neubiorev.2012.01.002.CrossRefGoogle ScholarPubMed
Milton, A. L., Lee, J. L. C., Butler, V. J., Gardner, R., & Everitt, B. J. (2008). Intra-amygdala and systemic antagonism of NMDA receptors prevents the reconsolidation of drug-associated memory and impairs subsequently both novel and previously acquired drug-seeking behaviors. The Journal of Neuroscience, 28(33), 82308237.CrossRefGoogle ScholarPubMed
Monfils, M. H., & Holmes, E. A. (2018). Memory boundaries: Opening a window inspired by reconsolidation to treat anxiety, trauma-related, and addiction disorders. The Lancet Psychiatry, 5(12), 10321042. https://doi.org/http://dx.doi.org/10.1016/S2215-0366%2818%2930270-0.CrossRefGoogle ScholarPubMed
Olatunji, B. O., Cisler, J. M., Deacon, B. J., Connolly, K., & Lohr, J. M. (2007). The disgust propensity and sensitivity scale-revised: Psychometric properties and specificity in relation to anxiety disorder symptoms. Journal of Anxiety Disorders, 21(7), 918930. https://doi.org/10.1016/j.janxdis.2006.12.005.CrossRefGoogle ScholarPubMed
Pedreira, M. E., Pérez-Cuesta, L. M., & Maldonado, H. (2004). Mismatch between what is expected and what actually occurs triggers memory reconsolidation or extinction. Learning & Memory, 11(5), 579585.CrossRefGoogle ScholarPubMed
Pierce, R. C., & Kumaresan, V. (2006). The mesolimbic dopamine system: The final common pathway for the reinforcing effect of drugs of abuse? Neuroscience & Biobehavioral Reviews, 30(2), 215238. https://doi.org/http://dx.doi.org/10.1016/j.neubiorev.2005.04.016.CrossRefGoogle ScholarPubMed
Public Health England, Department of Health, & National Drug Evidence Centre (2018). Adult drug statistics from the National Drug Treatment Monitoring System (NDTMS). April 2017, 38. http://www.facebook.com/PublicHealthEngland.Google Scholar
Robbins, T. W., Ersche, K. D., & Everitt, B. J. (2008). Drug addiction and the memory systems of the brain. Annals of the New York Academy of Sciences, 1141(1), 121.CrossRefGoogle ScholarPubMed
Rozin, P., & Fallon, A. E. (1987). A perspective on disgust. Psychological Review, 94(1), 2341. https://doi.org/10.1037/0033-295X.94.1.23.CrossRefGoogle ScholarPubMed
Saitoh, A., Akagi, K., Oka, J.-I., & Yamada, M. (2017). Post-reexposure administration of d-cycloserine facilitates reconsolidation of contextual conditioned fear memory in rats. Journal of Neural Transmission, 124(5), 583587. https://doi.org/10.1007/s00702-017-1704-0.CrossRefGoogle ScholarPubMed
Saunders, J. B., Aasland, O. G., Babor, T. F., Delafuente, J. R., Grant, M., De La Fuente, J. R., … Grant, M. (1993). Development of the alcohol use disorders identification test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption-II. Addiction, 88(6), 791804. https://doi.org/10.1111/j.1360-0443.1993.tb02093.x.CrossRefGoogle Scholar
Schienle, A., Arendasy, M., & Schwab, D. (2015). Disgust responses to bitter compounds: The role of disgust sensitivity. Chemosensory Perception, 8(4), 167173. https://doi.org/10.1007/s12078-015-9186-7.CrossRefGoogle Scholar
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science (New York, N.Y.), 275(5306), 15931599.CrossRefGoogle ScholarPubMed
Self, D. W. (1998). Neural substrates of drug craving and relapse in drug addiction. Annals of Medicine, 30(4), 379389. https://doi.org/10.3109/07853899809029938.CrossRefGoogle ScholarPubMed
Sevenster, D., Beckers, T., & Kindt, M. (2013). Prediction error governs pharmacologically induced amnesia for learned fear. Science (New York, N.Y.), 339(6121), 830833. https://doi.org/10.1126/science.1231357.CrossRefGoogle ScholarPubMed
Sevenster, D., Beckers, T., & Kindt, M. (2014). Prediction error demarcates the transition from retrieval, to reconsolidation, to new learning. Learning & Memory, 21(11), 580584. https://doi.org/10.1101/lm.035493.114.CrossRefGoogle ScholarPubMed
Sher, K. J., Grekin, E. R., & Williams, N. A. (2005). The development of alcohol use disorders. Annual Review of Clinical Psychology, 1(1), 493523. https://doi.org/10.1146/annurev.clinpsy.1.102803.144107.CrossRefGoogle ScholarPubMed
Shumake, J., Jones, C., Auchter, A., & Monfils, M.-H. (2018). Data-driven criteria to assess fear remission and phenotypic variability of extinction in rats. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1742), 20170035. https://doi.org/10.1098/rstb.2017.0035.CrossRefGoogle ScholarPubMed
Simons, J. S., & Gaher, R. M. (2005). The distress tolerance scale: Development and validation of a self-report measure. Motivation and Emotion, 29(2), 83102. https://doi.org/10.1007/s11031-005-7955-3.CrossRefGoogle Scholar
Singleton, E. G., Henningfield, J. E., & Tiffany, S. T. (1994). Alcohol craving questionnaire: ACQ-now: Background and administration manual. Baltimore: NIDA Addiction Research Centre.Google Scholar
Sinha, R., & Li, C. S. R. (2007). Imaging stress- and cue-induced drug and alcohol craving: Association with relapse and clinical implications. Drug and Alcohol Review, 26(1), 2531. https://doi.org/10.1080/09595230601036960.CrossRefGoogle ScholarPubMed
Sobell, L. C., & Sobell, M. B. (1992). Timeline follow-back. In Measuring alcohol consumption (pp. 4172). Totowa, NJ: Humana Press.CrossRefGoogle Scholar
Soeter, M., & Kindt, M. (2011). Disrupting reconsolidation: Pharmacological and behavioral manipulations. Learning & Memory, 18(6), 357366. https://doi.org/10.1101/lm.2148511.CrossRefGoogle ScholarPubMed
Soeter, M., & Kindt, M. (2015). An abrupt transformation of phobic behavior after a post-retrieval amnesic agent. Biological Psychiatry, 78(12), 880886. https://doi.org/10.1016/j.biopsych.2015.04.006.CrossRefGoogle ScholarPubMed
Spielberger, C. D., Gorusch, R.L., Lushene, J., Vagg, P.R., & Jacbos, G.A. (1983). Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
Stevens, J. P. (2012). Applied multivariate statistics for the social sciences. New York: Routledge.CrossRefGoogle Scholar
Suzuki, A., Josselyn, S. A., Frankland, P. W., Masushige, S., Silva, A. J., & Kida, S. (2004). Memory reconsolidation and extinction have distinct temporal and biochemical signatures. The Journal of Neuroscience, 24(20), 47874795.CrossRefGoogle ScholarPubMed
Torregrossa, M. M., & Taylor, J. R. (2013). Learning to forget: Manipulating extinction and reconsolidation processes to treat addiction. Psychopharmacology, 226(4), 659672.CrossRefGoogle ScholarPubMed
Tronson, N. C., & Taylor, J. R.. (2013). Addiction: A drug-induced disorder of memory reconsolidation. Current opinion in neurobiology, 23, 573580. https://doi.org/10.1016/j.conb.2013.01.022.CrossRefGoogle ScholarPubMed
Tunstall, B. J., Verendeev, A., & Kearns, D. N. (2012). A comparison of therapies for the treatment of drug cues: Counterconditioning vs. extinction in male rats. Experimental and Clinical Psychopharmacology, 20(6), 447453. https://doi.org/10.1037/a0030593.CrossRefGoogle ScholarPubMed
Waelti, P., Dickinson, A., & Schultz, W. (2001). Dopamine responses comply with basic assumptions of formal learning theory. Nature, 412(6842), 4348.CrossRefGoogle ScholarPubMed
Walker, M. P., & Stickgold, R.. (2016). Understanding the boundary conditions of memory reconsolidaiton. PNAS, 113, E3991E3992. https://doi.org/10.1073/pnas.1607964113.CrossRefGoogle Scholar
Walsh, K. H., Das, R. K., Saladin, M. E., & Kamboj, S. K. (2018). Modulation of naturalistic maladaptive memories using behavioural and pharmacological reconsolidation-interfering strategies: A systematic review and meta-analysis of clinical and ‘sub-clinical’ studies. Psychopharmacology, 235(9), 25072527. https://doi.org/10.1007/s00213-018-4983-8.CrossRefGoogle ScholarPubMed
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6), 10631070. https://doi.org/10.1037/0022-3514.54.6.1063.CrossRefGoogle ScholarPubMed
WHO | Global status report on alcohol and health. (2018). WHO. https://www.who.int/substance_abuse/publications/global_alcohol_report/en/.Google Scholar
Xue, Y.-X., Deng, J.-H., Chen, Y.-Y., Zhang, L.-B., Wu, P., Huang, G.-D., … Lu, L. (2017). Effect of selective inhibition of reactivated nicotine-associated memories with propranolol on nicotine craving. JAMA Psychiatry, 74(3), 224232. https://doi.org/10.1001/jamapsychiatry.2016.3907.CrossRefGoogle ScholarPubMed
Xue, Y.-X., Luo, Y.-X., Wu, P., Shi, H.-S. H.-S., Xue, L.-F., Chen, C., … Lu, L. (2012). A memory retrieval-extinction procedure to prevent drug craving and relapse. Science (New York, N.Y.), 336(6078), 241245. https://doi.org/10.1126/science.1215070.CrossRefGoogle ScholarPubMed
Supplementary material: File

Gale et al. supplementary material

Gale et al. supplementary material

Download Gale et al. supplementary material(File)
File 73.1 KB