Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T03:11:43.030Z Has data issue: false hasContentIssue false

Major psychosis and dopamine: controversial features and some suggestions

Published online by Cambridge University Press:  09 July 2009

Robert Miller*
Affiliation:
Department of Anatomy, University of Otago, Dunedin, New Zealand
*
1Address for correspondence: Dr Robert Miller, Department of Anatomy., University of Otago, P.O. Box 913, Dunedin, New Zealand.

Synopsis

Three problems with the dopamine hypothesis of major psychosis are pointed out: the long time-course of neuroleptic therapy; the absence of tolerance to the antipsychotic effects of neuroleptic drugs, or of a supersensitivity psychosis on drug withdrawal; and the absence of potent psychotogenic properties in the direct dopamine agonists. A resolution of these paradoxes is suggested relying on a role for dopamine in learning processes at a relatively high (cognitive) functional level. The hypothesis proposed is also used to explain the origin of some of the more distinctive psychotic symptoms.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angrist, B., Lee, H. K. & Gershon, S. (1974). The antagonism of amphetamine induced symptomatology by a neuroleptic. American Journal of Psychiatry 131, 817819.CrossRefGoogle ScholarPubMed
Angrist, B., Thompson, H., Shopsin, B. & Gershon, S. (1975). Clinical studies with dopamine-receptor stimulants. Psychopharmacology 44, 273280.CrossRefGoogle ScholarPubMed
Asper, H., Baggiolini, M., Burki, H. R., Lauener, H., Ruch, W. & Stille, G. (1973). Tolerance phenomena with neuroleptics. Catalepsy, apomorphine stereotypies and striatal dopamine metabolism in the rat after single and repeated administration of loxapine and haloperidol. European Journal of Pharmacology 22, 287294.CrossRefGoogle ScholarPubMed
Bacopoulos, N. G. (1981). Biochemical mechanism of tolerance to neuroleptic drugs: regional differences in rat brain. European Journal of Pharmacology 70, 585586.CrossRefGoogle ScholarPubMed
Bacopoulos, N. G., Bustos, G., Redmond, D. E., Baulu, J. & Roth, R. H. (1978). Regional sensitivity of primate brain dopaminergic neurones to halperidol: alterations following chronic treatment. Brain Research 157, 396401.CrossRefGoogle Scholar
Bacopoulos, N. G., Spokes, E. G., Bird, E. D. & Roth, R. H. (1979). Anti-psychotic drug action in schizophrenic patients: effect on cortical dopamine metabolism after long-term treatment. Science 205, 14051407.CrossRefGoogle Scholar
Bannerjee, V. (1971). Acquisition of conditioned avoidance response in rats under the influence of addicting drugs. Psychopharmacologia 22, 133143.CrossRefGoogle Scholar
Beninger, R. J. (1983). The role of dopamine in locomotor activity and learning. Brain Research Reviews 6, 173196.CrossRefGoogle Scholar
Beninger, R. J., & Hahn, B. L. (1983). Pimozide blocks establishment but not expression of amphetamine-produced environment-specific conditioning. Science 220, 13041306.CrossRefGoogle Scholar
Beninger, R. J., Phillips, A. G. & Fibiger, H. C. (1983). Prior training and intermittent retraining attenuate pimozide-induced avoidance deficits. Pharmacology, Biochemistry and Behaviour 18, 619624.CrossRefGoogle ScholarPubMed
Bird, E. D., Crow, T. J., Iversen, L. L., Longden, A., Mackay, A. V., Riley, G. J. & Spokes, E. G. (1979). Dopamine and homovanillic acid in the post-mortem brain in schizophrenia. Journal of Physiology (London) 293, 3637P.Google ScholarPubMed
Bleuler, E. (1950). Dementia Praecox or the Group of Schizophrenias (transl. Zinkin, J.). International Universities Press: New York.Google Scholar
Broekkamp, C. L. C. & Van Rossum, J. M. (1974). Effects of apomorphine on self-stimulation behaviour. Psychopharmacologia 34, 7180.CrossRefGoogle Scholar
Carlsson, A. & Lindqvist, M. (1963). Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacologica et Toxicologica 20, 140144.CrossRefGoogle ScholarPubMed
Casey, J. F., Bennett, I. F., Lindley, C. J., Hollister, L. E., Gordon, M. H. & Springer, N. N. (1960). Drug therapy in schizophrenia. A controlled study of the relative effectiveness of chlorpromazine, promazine, phenobarbital and placebo. Archives of General Psychiatry 2, 210220.CrossRefGoogle ScholarPubMed
Chouinard, G., Jones, B. D. & Annable, L. (1978). Neuroleptic-induced supersensitivity psychosis. American Journal of Psychiatry 135, 14091410.Google ScholarPubMed
Clow, A., Jenner, P. & Marsden, C. D. (1979). Changes in dopamine-mediated behaviour during one year's neuroleptic administration. European Journal of Pharmacology 57, 365375.CrossRefGoogle ScholarPubMed
Cole, J. O. & Davis, J. M. (1969). Anti-psychotic drugs. In The Schizophrenic Syndrome (ed. Bellack, L. and Loeb, L.), pp. 478568. Grune and Stratton: New York.Google Scholar
Cooper, B. R., Cott, J. M. & Breese, G. R. (1974). Effects of catecholamine-depleting drugs and amphetamine on self-stimulation of brain following various 6-hydroxydopamine treatments. Psychopharmacologia 37, 235248.CrossRefGoogle ScholarPubMed
Corrodi, H., Fuxe, K., Hokfelt, T., Lidbrink, P. & Ungerstedt, U. (1973). Effect of ergot drugs on central catecholamine neurones: evidence for a stimulation of central dopamine neurones. Journal of Pharmacy and Pharmacology 25, 409411.CrossRefGoogle Scholar
Costall, B. & Naylor, R. J. (1973). The site and mode of action of ET495 for the mediation of stereotyped behaviour in the rat. Naunyn-Schmiedebergs Archiv für experimentalle Pathologie und Pharmakologie 278, 117133.CrossRefGoogle ScholarPubMed
Costall, B. & Naylor, R. J. (1975). Detection of the neuroleptic properties of clozapine, sulpiride and thioridazine. Psychopharmacologia 43, 6975.CrossRefGoogle ScholarPubMed
Crow, T. J. (1972). Catecholamine-containing neurons and electrical self-stimulation. I. A review of some data. Psychological Medicine 2, 414421.CrossRefGoogle Scholar
Crow, T. J. (1980). Molecular pathology of schizophrenia: more than one disease process? British Medical Journal i, 6668.CrossRefGoogle Scholar
Crow, T. J., Spear, P. J. & Arbuthnott, G. W. (1972). lntracranial self-stimulation with electrodes in the region of the locus coeruleus. Brain Research 36, 275287.CrossRefGoogle Scholar
Crow, T. J., Baker, H. F., Cross, A. J., Joseph, M. H., Lofthouse, R., Longden, A., Owen, F., Riley, G. J., Glover, V. & Killpach, W. S. (1979). Monoamine mechanisms in chronic schizophrenia: post-mortem neurochemical findings. British Journal of Psychiatry 134, 249256.CrossRefGoogle ScholarPubMed
Crow, T. J., Cross, A. J., Johnstone, E. C., Longden, A., Owen, F. & Ridley, R. M. (1980). Time course of the anti-psychotic effect in schizophrenia and some changes in post-mortem brain and their relation to neuroleptic medication. Advances in Biochemical Psychopharmacology 24, 495503.Google Scholar
Davidson, A. B. & Weidley, E. (1976). Differential effects of neuroleptic and other psychotic agents on acquisition of avoidance in rats. Life Sciences 18, 12791284.CrossRefGoogle Scholar
Davies, J. A., Jackson, B. & Redfern, P. H. (1974). The effect of amantadine, L-DOPA, (+) amphetamine and apomorphine on the acquisition of the conditioned avoidance response. Neuropharmacology 13, 199204.CrossRefGoogle ScholarPubMed
Davis, J. M. (1977). New anti-psychotic drugs. Current Psychiatric Therapies 17, 209218.Google Scholar
Davis, J. M. & Garver, D. L. (1978). Neuroleptics: clinical use in psychiatry. In Handbook of Psychopharmacology, Vol. 10 (ed. Iversen, L. L., Iversen, S. D. and Snyder, S. H.), pp. 129164. Plenum Press: New York and London.CrossRefGoogle Scholar
Deniker, P. (1960). Experimental neurological syndromes and the new drug therapies in psychiatry. Comprehensive Psychiatry 1, 92102.CrossRefGoogle ScholarPubMed
Duvoisin, R. C., Heikkila, R. E. & Manzino, L. (1982). Pergolide-induced circling in rats with 6-hydroxydopamine lesions in the nigrostriatal pathway. Neurology 32, 13781391.CrossRefGoogle ScholarPubMed
Extein, I., Agusthy, K., Gold, M. S., Pottash, A. L. C., Martin, D. & Potter, W. Z. (1982). Plasma haloperidol levels and clinical response in acute schizophrenia. Psychopharmacology Bulletin 18, 156158.Google ScholarPubMed
Extein, I., Pottash, A. L. C. & Gold, M. S. (1983). Therapeutic window for plasma haloperidol in acute schizophrenic psychosis. Lancet i, 10481049.CrossRefGoogle Scholar
Fibiger, H. C., Fibiger, H. P. & Zis, A. P. (1973). Attentuation of amphetamine-induced motor stimulation and stereotypy by 6-hydroxydopamine in the rat. British Journal of Pharmacology 47, 683692.CrossRefGoogle Scholar
Fielding, S. & Lal, H. (1978). Behavioural actions of neuroleptics. In Handbook of Psychopharmacology, Vol. 10 (ed. Iversen, L. L., Iversen, S. D. and Snyder, S. H.), pp. 91128. Plenum Press: New York and London.CrossRefGoogle Scholar
Flugel, P. (1956). Thérapeutique par medication neuroleptiques obtenu en réalisant systématiques des états Parkinsoniformes. L'Encéphale 45, 10901092.Google Scholar
Freedberg, K. A., Innis, R. B., Creese, I. & Snyder, S. H. (1979). Anti-schizophrenic drugs: differential plasma protein binding and therapeutic activity. Life Sciences 24, 24672474.CrossRefGoogle Scholar
Fuster, J. M. (1980). The Prefrontal Cortex. Anatomy, Physiology and Neuropsychology of the Frontal Lobe. Raven Press: New York.Google Scholar
German, D. C. & Bowden, D. M. (1974). Catecholamine systems as the neural substrate for intracranial self-stimulation: a hypothesis. Brain Research 83, 381419.CrossRefGoogle Scholar
Goodwin, F. K. & Post, R. M. (1975). Studies of amine metabolites in affectiveness illness and in schizophrenia: a comparative analysis. In Biology of the Major Psychoses: A Comparative Analysis (ed. Freedman, D. X.), pp. 299332. Raven Press: New York.Google Scholar
Heffner, T. G., Luttinger, D., Hartman, J. A. & Seiden, L. S. (1981). Regional changes in brain catecholamine turnover in the rat during performance on fixed ratio and variable interval schedules of reinforcement. Brain Research 214, 215219.CrossRefGoogle ScholarPubMed
Hornykiewicz, O. (1982). Brain catecholamines in schizophrenia–a good case for noradrenaline. Nature (London) 299, 484486.CrossRefGoogle ScholarPubMed
Johnson, G., Gershon, S., Burdock, E. I., Floyd, A. & Hekiman, L. (1971). Comparative effects of lithium and chlorpromazine in the treatment of acute manic states. British Journal of Psychiatry 119, 267276.CrossRefGoogle ScholarPubMed
Johnstone, E. C., Crow, T. J., Ferrier, I. N., Frith, C. D., Owens, D. G. C., Bourne, R. C. & Gamble, S. J. (1983). Adverse effects of anticholinergic medication on positive schizophrenic symptoms. Psychological Medicine 13, 513528.CrossRefGoogle ScholarPubMed
Kelemen, K. & Bovet, D. (1961). Effect of drugs upon the defensive behaviour of rats. (Effect of strychnine, compound 1757 1.5, amphetamine and chlorpromazine.) Acta Physiologica Hungarica 19, 143154.Google Scholar
Klein, D. B. (1970). A History of Scientific Psychology. Routledge and Kegan Paul: London.Google Scholar
Kline, N. S. (1956). Clinical applications of reserpine. In Psycho-pharmacology: A Symposium (ed. Kline, N. S.), pp. 81108. American Association for the Advancement of Science, Publication No. 42: Washington D.C.Google Scholar
Kraepelin, E. (1971). Dementia Praecox and Paraphrenia (transl. Barclay, R. M.). Krieger: Huntington, NY.Google Scholar
Laduron, P., De Bie, K. & Leysen, J. (1977). Specific effect of haloperidol on dopamine turnover in the frontal cortex. Naunyn-Schmiedebergs Archiv für experimentalle Pathologie und Pharmakologie 296, 183185.CrossRefGoogle ScholarPubMed
Lee, T. & Seeman, P. (1980). Elevation of brain neuroleptic/dopamine receptors in schizophrenia. American Journal of Psychiatry 137, 191197.Google ScholarPubMed
Lehmann, H. E. (1975). Schizophrenia: introduction and history. In Comprehensive Textbook of Psychiatry, Vol. 1 (ed. Freedman, A. M., Kaplan, H. I. and Sadock, B. J.), pp. 851860. Williams and Wilkins: Baltimore.Google Scholar
Lehmann, H. E. & Hanrahan, G. E. (1954). Chlorpromazine. New inhibiting agent for psychomotor excitement and manic states. Archives of Neurology and Psychiatry 71, 227237.CrossRefGoogle ScholarPubMed
Le Moal, M., Stinus, L. & Galey, D. (1976). Radio frequency lesions of the ventral mesencephalic tegmentum: neurological and behavioural considerations. Experimental Neurology 50, 521525.CrossRefGoogle Scholar
Leysen, J. E., Niemegeers, C. J., Tollenaere, J. P. & Laduron, P. M. (1978). Serotonergic component of neuroleptic receptors. Nature (London) 272, 168171.CrossRefGoogle ScholarPubMed
Mackay, A. V. P., Iversen, L. L., Rossor, M., Spokes, E., Bird, E., Arregui, A., Creese, I. & Snyder, S. H. (1982). Increased brain dopamine and dopamine receptors in schizophrenia. Archives of General Psychiatry 39, 991997.CrossRefGoogle ScholarPubMed
McGhie, A. (1969). Pathology of Attention. Penguin Books: Harmondsworth.Google Scholar
Matsumoto, T., Uchimura, H., Hirano, M., Soo Kim, J., Yokoo, H., Shimomura, M., Nakahara, T., Inoue, K. & Oomagari, K. (1983). Differential effects of acute and chronic administration of haloperidol on homovanillic acid levels in discrete areas of rat brain. European Journal of Pharmacology 89, 2733.CrossRefGoogle ScholarPubMed
Meltzer, H. Y., Goode, D. J. & Fang, V. S. (1977). Effects of chlorpromazine on plasma prolactin and chlorpromazine levels. Psychopharmacology Bulletin 13, 5960.Google ScholarPubMed
Miller, R. (1981). Meaning and Purpose in the Intact Brain. Oxford University Press: Oxford.Google Scholar
Mora, F., Phillips, A. G., Koolhaas, J. M. & Rolls, E. T. (1976). Prefrontal cortex and neostriatum self-stimulation in the rat: differential effects produced by apomorphine. Brain Research Bulletin 1, 421424.CrossRefGoogle ScholarPubMed
Murphy, D. L., Shiling, D. J. & Murray, R. M. (1978). Psychoactive drug responder subgroups: Possible contributions to psychiatric classifications. In Psychopharmacology: A Generation of Progress (ed. Lipton, M. A., Di Mascio, A. and Killam, K. F.), pp. 807820. Raven Press: New York.Google Scholar
Olpe, H. R. & Koella, W. P. (1979). Inhibition of nigral and neocortical cells by γ-hydroxybutyrate: a microiontophroetic investigation. European Journal of Pharmacology 53, 359364.CrossRefGoogle ScholarPubMed
Overton, D. A. (1978). Major theories of state dependent learning. In Drug Discrimination and State Dependent Learning (ed. Ho, B. T., Richards, D. W. and Chute, D. L.), pp. 283318. Academic Press: New York.Google ScholarPubMed
Owen, F., Crow, T. J., Poulter, M., Cross, A. J., Longden, A. & Riley, G. T. (1978). Increased dopamine-receptor sensitivity in schizophrenia. Lancet ii, 223225.CrossRefGoogle Scholar
Peroutka, S. J. & Snyder, S. H. (1980). Relationship of neuroleptic drug effects at brain dopamine, serotonin, alpha-adrenergic and histamine receptors to clinical potency. American Journal of Psychiatry 137, 15181522.Google ScholarPubMed
Prien, R. F., Caffey, E. M. & Klett, J. C. (1972). Comparison of lithium carbonate and chlorpromazine in the treatment of mania. Archives of General Psychiatry 26, 146153.CrossRefGoogle ScholarPubMed
Randrup, A., Munkvad, I. & Udsen, P. (1963). Adrenergic mechanisms and amphetamine-induced abnormal behaviour. Acta Pharmacologica et Toxicologia 20, 145157.CrossRefGoogle ScholarPubMed
Rensch, B. & Rahmann, H. (1960). Einfluss des Pervitins auf das Gedachtnis von Goldhamstern. Pflügers Archivs für die gesamte Physiologie 271, 693704.CrossRefGoogle Scholar
Reynolds, G. P. (1983). Increased concentrations and lateral asymmetry of amygdala dopamine in schizophrenia. Nature (London) 305, 527529.CrossRefGoogle ScholarPubMed
Reynolds, G. P., Reynolds, L. M., Riederer, P., Jellinger, K. & Gabriel, E. (1980). Dopamine receptors and schizophrenia: drug effect or illness. Lancet ii, 1251.CrossRefGoogle Scholar
Roth, R. H., Doherty, J. D. & Walters, J. R. (1980). Gamma-hydroxybutyrate: a role in the regulation of central dopaminergic neurons? Brain Research 189, 556560.CrossRefGoogle ScholarPubMed
Scatton, B. (1977). Differential regional development of the tolerance to increase in dopamine turnover upon repeated neuroleptic administration. European Journal of Pharmacology 46, 363369.CrossRefGoogle ScholarPubMed
Schultz, S. Ch., Van Kammen, D. P., Buchsbaum, M. S., Roth, R. H., Alexander, P. & Bunney, W. E. (1981). Gamma-hydroxy-butyrate treatment of schizophrenia: a pilot study. Pharmaco-psychiatria 14, 129134.CrossRefGoogle Scholar
Seeman, P. (1980). Brain dopamine receptors. Pharmacological Reviews 32, 229313.Google ScholarPubMed
Segal, D. S. & Janovsky, D. S. (1978). Psychostimulant-induced behavioural effects: possible models of schizophrenia. In Psycho-pharmacology: A Generation of Progress (ed. Lipton, M. A., Di Mascio, A. and Killam, K. F.), pp. 11131123. Raven Press: New York.Google Scholar
Shore, P. A. (1976). Actions of amfonelic acid and other non-amphetamine stimulants on the dopamine neuron. Journal of Pharmacy and Pharmacology 28, 855857.CrossRefGoogle ScholarPubMed
Simon, H., Scatton, B. & Le, Moal M. (1980). Dopaminergic A10 neurones are involved in cognitive functions. Nature 286, 150151.CrossRefGoogle ScholarPubMed
Smith, R. C., Vroulis, G., Shvartsburd, A., Allen, R., Lewis, N., Scoolar, J. C., Chojnacki, M. & Johnson, R. (1982). RBC and plasma levels of haloperidol and clinical response in schizophrenia. American Journal of Psychiatry 139, 10541056.Google ScholarPubMed
St Laurent, J., Le Clerc, R. R., Mitchell, M. L. & Miliaressis, T. E. (1973). Effects of apomorphine on self-stimulation. Pharmacology Biochemistry and Biochemistry and Behaviour 1, 581585.CrossRefGoogle ScholarPubMed
Tarsy, D. & Baldessarini, R. J. (1974). Behavioural supersensitivity to apomorphine following chronic treatment with drugs which interfere with the synaptic function of catecholamines. Neuropharmacology 13, 927940.CrossRefGoogle ScholarPubMed
Tassin, J. P., Stinus, L., Simon, H., Blanc, G., Thierry, A. M., Le Moal, M., Cardo, B. & Glowinski, J. (1978). Relationship between the locomotor hyperactivity induced by A10 lesions and the destruction of the fronto-cortical dopaminergic innervation in the rat. Brain Research 141, 267281.CrossRefGoogle ScholarPubMed
Thornberg, J. E. & Moore, K. E. (1974). A comparison of effects of apomorphine and ET495 on locomotor activity and circling behaviour in mice. Neuropharmacology 13, 189197.CrossRefGoogle Scholar
Van Rossum, J. M. (1966). The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. Archives internationales de Pharmacodynamie et de Thérapie 160, 492494.Google ScholarPubMed
Von Voigtlander, P. F. & Moore, K. E. (1973). Involvement of nigro-striatal neurons in the in vivo release of dopamine by amphetamine, amantidine and tyramine. Journal of Pharmacology and Experimental Therapeutics 184, 542552.Google ScholarPubMed
Wagner, H. N. Jr, Burns, D. H., Dannals, R. F., Wong, D. F., Langstrom, B., Duelfer, T., Frost, J. J., Ravert, H. T., Links, J. M., Rosenbloom, S. B., Lukas, S. E., Kramer, A. V. & Kuhar, M. J. (1983). Imaging dopamine receptors in the human brain by positron tomography. Science 221, 12641266.CrossRefGoogle ScholarPubMed
Wauquier, A. & Niemegeers, C. J. E. (1973). Intracranial self-stimulation in rats as a function of various stimulus parameters. III. Influence of apomorphine on medial forebrain bundle stimulation with monopolar electrodes. Psychopharmacologia 30, 163172.CrossRefGoogle Scholar
White, F. J. & Wang, R. Y. (1983). Differential effects of classical and atypical anti-psychotic drugs on A9 and A10 dopamine neurons. Science 221, 10541057.CrossRefGoogle Scholar