Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T05:54:11.332Z Has data issue: false hasContentIssue false

The relation between dopamine D2 receptor blockade and the brain reward system: a longitudinal study of first-episode schizophrenia patients

Published online by Cambridge University Press:  15 January 2019

Sanne Wulff
Affiliation:
Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark
Mette Ødegaard Nielsen*
Affiliation:
Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
Egill Rostrup
Affiliation:
Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark Department of Clinical Physiology, Functional Imaging Unit, Nuclear Medicine and PET, Rigshospitalet Glostrup, University of Copenhagen, København, Denmark
Claus Svarer
Affiliation:
Neurobiology Research Unit, Rigshospitalet, University of Copenhagen, København, Denmark
Lars Thorbjørn Jensen
Affiliation:
Department of Clinical Physiology and Nuclear Medicine, Herlev Hospital, University of Copenhagen, Herlev, Denmark
Lars Pinborg
Affiliation:
Neurobiology Research Unit, Rigshospitalet, University of Copenhagen, København, Denmark
Birte Yding Glenthøj
Affiliation:
Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, University of Copenhagen, Glostrup, Denmark Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
*
Author for correspondence: Mette Ødegaard Nielsen, E-mail: mette@cnsr.dk

Abstract

Background

Psychotic symptoms have been linked to salience abnormalities in the brain reward system, perhaps caused by a dysfunction of the dopamine neurotransmission in striatal regions. Blocking dopamine D2 receptors dampens psychotic symptoms and normalises reward disturbances, but a direct relationship between D2 receptor blockade, normalisation of reward processing and symptom improvement has not yet been demonstrated. The current study examined the association between blockade of D2 receptors in the caudate nucleus, alterations in reward processing and the psychopathology in a longitudinal study of antipsychotic-naïve first-episode schizophrenia patients.

Methods

Twenty-two antipsychotic-naïve first-episode schizophrenia patients (10 males, mean age 23.3) and 23 healthy controls (12 males, mean age 23.5) were examined with single-photon emission computed tomography using 123I-labelled iodobenzamide. Reward disturbances were measured with functional magnetic resonance imaging (fMRI) using a modified version of the monetary-incentive-delay task. Patients were assessed before and after 6 weeks of treatment with amisulpride.

Results

In line with previous results, patients had a lower fMRI response at baseline (0.2 ± 0.5 v. 0.7 ± 0.6; p = 0.008), but not at follow-up (0.5 ± 0.6 v. 0.6 ± 0.7), and a change in the fMRI signal correlated with improvement in Positive and Negative Syndrome Scale positive symptoms (ρ = −0.435, p = 0.049). In patients responding to treatment, a correlation between improvement in the fMRI signal and receptor occupancy was found (ρ = 0.588; p = 0.035).

Conclusion

The results indicate that salience abnormalities play a role in the reward system in schizophrenia. In patients responding to a treatment-induced blockade of dopamine D2 receptors, the psychotic symptoms may be ameliorated by normalising salience abnormalities in the reward system.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Contributed equally to the study.

References

Berridge, KC and Robinson, TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research Reviews 28, 309369.10.1016/S0165-0173(98)00019-8CrossRefGoogle Scholar
Bloomfield, MAP, Morgan, CJA, Kapur, S, Curran, HV and Howes, OD (2014a) The link between dopamine function and apathy in cannabis users: an [18F]-DOPA PET imaging study. Psychopharmacology 231, 22512259.10.1007/s00213-014-3523-4CrossRefGoogle Scholar
Bloomfield, MAP, Pepper, F, Egerton, A, Demjaha, A, Tomasi, G, Mouchlianitis, E, Maximen, L, Veronese, M, Turkheimer, F, Selvaraj, S and Howes, OD (2014b) Dopamine function in cigarette smokers: an [18]-DOPA PET study. Neuropsychopharmacology 39, 23972404.10.1038/npp.2014.87CrossRefGoogle Scholar
Cohen, JY, Haesler, S, Vong, L, Lowell, BB and Uchida, N (2012) Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482, 8588.10.1038/nature10754CrossRefGoogle ScholarPubMed
Cooper, JC and Knutson, B (2008) Valence and salience contribute to nucleus accumbens activation. NeuroImage 39, 538547.10.1016/j.neuroimage.2007.08.009CrossRefGoogle ScholarPubMed
Dowd, EC, Frank, MJ, Collins, A, Gold, JM and Barch, DM (2016) Probabilistic reinforcement learning in patients with schizophrenia: relationships to anhedonia and avolition. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 1, 460473.Google ScholarPubMed
Esslinger, C, Englisch, S, Inta, D, Rausch, F, Schirmbeck, F, Mier, D, Kirsch, P, Meyer-Lindenberg, A and Zink, M (2012) Ventral striatal activation during attribution of stimulus saliency and reward anticipation is correlated in unmedicated first episode schizophrenia patients. Schizophrenia Research 140, 114121.10.1016/j.schres.2012.06.025CrossRefGoogle ScholarPubMed
Farde, L, Wiesel, FA, Stone-Elander, S, Halldin, C, Nordstrom, AL, Hall, H and Sedvall, G (1990) D2 dopamine receptors in neuroleptic-naive schizophrenic patients. A positron emission tomography study with [11C]raclopride. Archives of General Psychiatry 47, 213219.10.1001/archpsyc.1990.01810150013003CrossRefGoogle ScholarPubMed
Gardner, EL (2005) Endocannabinoid signaling system and brain reward: emphasis on dopamine. Pharmacology Biochemistry and Behavior 81, 263284.10.1016/j.pbb.2005.01.032CrossRefGoogle ScholarPubMed
Glenthoj, BY, Mackeprang, T, Svarer, C, Rasmussen, H, Pinborg, LH, Friberg, L, Baaré, W, Hemmingsen, R and Videbaek, C (2006) Frontal dopamine D2/3 receptor binding in drug-naive first-episode schizophrenic patients correlates with positive psychotic symptoms and gender. Biological Psychiatry 60, 621629.10.1016/j.biopsych.2006.01.010CrossRefGoogle Scholar
Hägele, C, Schlagenhauf, F, Rapp, M, Sterzer, P, Beck, A, Bermpohl, F, Stoy, M, Ströhle, A, Wittchen, HU, Dolan, RJ and Heinz, A (2015) Dimensional psychiatry: reward dysfunction and depressive mood across psychiatric disorders. Psychopharmacology 232, 331341.10.1007/s00213-014-3662-7CrossRefGoogle ScholarPubMed
Heinz, A (2002) Dopaminergic dysfunction in alcoholism and schizophrenia – psychopathological and behavioral correlates. European Psychiatry 17, 916.10.1016/S0924-9338(02)00628-4CrossRefGoogle ScholarPubMed
Heinz, A and Schlagenhauf, F (2010) Dopaminergic dysfunction in schizophrenia: salience attribution revisited. Schizophrenia Bulletin 36, 472485.10.1093/schbul/sbq031CrossRefGoogle ScholarPubMed
Howes, OD and Kapur, S (2014) A neurobiological hypothesis for the classification of schizophrenia: type a (hyperdopaminergic) and type b (normodopaminergic). British Journal of Psychiatry 205, 13.10.1192/bjp.bp.113.138578CrossRefGoogle Scholar
Howes, OD, Montgomery, AJ, Asselin, M-C, Murray, RM, Grasby, PM and McGuire, PK (2007) Molecular imaging studies of the striatal dopaminergic system in psychosis and predictions for the prodromal phase of psychosis. The British Journal of Psychiatry. Supplement 51, s13s18.10.1192/bjp.191.51.s13CrossRefGoogle Scholar
Howes, OD, Montgomery, AJ, Asselin, MC, Murray, RM, Valli, I, Tabraham, P, Bramon-Bosch, E, Valmaggia, L, Johns, L, Broome, M, McGuire, PK and Grasby, PM (2009) Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Archives of General Psychiatry 66, 1320.10.1001/archgenpsychiatry.2008.514CrossRefGoogle ScholarPubMed
Howes, O, Mccutcheon, R and Stone, J (2015) Europe PMC funders group glutamate and dopamine in schizophrenia: an update for the 21st century. J Psychopharmaco 29, 97115.10.1177/0269881114563634CrossRefGoogle Scholar
Innis, RB, Cunningham, VJ, Delforge, J, Fujita, M, Gjedde, A, Gunn, RN, Holden, J, Houle, S, Huang, SC, Ichise, M, Iida, H, Ito, H, Kimura, Y, Koeppe, RA, Knudsen, GM, Knuuti, J, Lammertsma, AA, Laruelle, M, Logan, J, Maguire, RP, Mintun, MA, Morris, ED, Parsey, R, Price, JC, Slifstein, M, Sossi, V, Suhara, T, Votaw, JR, Wong, DF and Carson, RE (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. Journal of Cerebral Blood Flow and Metabolism 27, 15331539.10.1038/sj.jcbfm.9600493CrossRefGoogle ScholarPubMed
Jasinska, AJ, Zorick, T, Brody, AL and Stein, EA (2014). Dual role of nicotine in addiction and cognition: a review of neuroimaging studies in humans. Neuropharmacology 84, 111122.10.1016/j.neuropharm.2013.02.015CrossRefGoogle ScholarPubMed
Juckel, G, Schlagenhauf, F, Koslowski, M, Filonov, D, Wüstenberg, T, Villringer, A, Knutson, B, Kienast, T, Gallinat, J, Wrase, J and Heinz, A (2006) Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, neuroleptics. Psychopharmacology 187, 222228.10.1007/s00213-006-0405-4CrossRefGoogle Scholar
Juckel, G, Friedel, E, Koslowski, M, Witthaus, H, Ozgürdal, S, Gudlowski, Y, Knutson, B, Wrase, J, Brüne, M, Heinz, A and Schlagenhauf, F (2012) Ventral striatal activation during reward processing in subjects with ultra-high risk for schizophrenia. Neuropsychobiology 66, 5056.10.1159/000337130CrossRefGoogle ScholarPubMed
Kapur, S (2003) Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. American Journal of Psychiatry 160, 1323.10.1176/appi.ajp.160.1.13CrossRefGoogle Scholar
Kay, SR, Fiszbein, A and Opler, LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia bulletin 13, 261276.10.1093/schbul/13.2.261CrossRefGoogle Scholar
Kegeles, S, Abi-Dargham, A, Gordon Frankle, W, Gil, R, Cooper, T, Slifstein, M, Hwang, D, Huang, Y, Haber, S and Laruelle, M (2010) Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. 67, 231–239.10.1001/archgenpsychiatry.2010.10CrossRefGoogle Scholar
Kim, E, Howes, OD, Veronese, M, Beck, K, Seo, S, Park, JW, Lee, JS, Lee, YS and Kwon, JS (2017) Presynaptic dopamine capacity in patients with treatment-resistant schizophrenia taking clozapine: an [18F]DOPA PET study. Neuropsychopharmacology 42, 941950.10.1038/npp.2016.258CrossRefGoogle Scholar
Knutson, B, Westdorp, A, Kaiser, E and Hommer, D (2000) FMRI visualization of brain activity during a monetary incentive delay task. NeuroImage 12, 2027.10.1006/nimg.2000.0593CrossRefGoogle ScholarPubMed
Knutson, B, Adams, CM, Fong, GW and Hommer, D (2001 a). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. Journal of Neuroscience 21, 15.10.1523/JNEUROSCI.21-16-j0002.2001CrossRefGoogle ScholarPubMed
Knutson, B, Fong, G, Adams, C, Varner, J and Hommer, D (2001 b) Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 12, 36833687.10.1097/00001756-200112040-00016CrossRefGoogle ScholarPubMed
Knutson, B, Bjork, JM, Fong, GW, Hommer, D, Mattay, VS and Weinberger, DR (2004) Amphetamine modulates human incentive processing. Neuron 43, 261269.10.1016/j.neuron.2004.06.030CrossRefGoogle ScholarPubMed
Kung, HF, Alavi, A, Chang, W, Kung, M, Keyes, JW, Velchik, MG, Billings, J, Pan, S and Noto, R (1990) In vivo SPECT imaging of CNS D. −2. Dopamine receptors: initial studies iodine-123-IBZM in humans. J Nucl Med. 31, 573579.Google Scholar
Levine, SZ and Leucht, S (2010) Elaboration on the early-onset hypothesis of antipsychotic drug action: treatment response trajectories. Biological Psychiatry 68, 8692.CrossRefGoogle ScholarPubMed
Loewinger, GC, Oleson, EB and Cheer, JF (2013) Using dopamine research to generate rational cannabinoid drug policy. Drug Testing and Analysis 5, 2226.CrossRefGoogle ScholarPubMed
McCutcheon, R, Beck, K, Jauhar, S and Howes, OD (2018) Defining the locus of dopaminergic dysfunction in schizophrenia: a meta-analysis and test of the mesolimbic hypothesis. Schizophrenia Bulletin, 44, 13011311.10.1093/schbul/sbx180CrossRefGoogle ScholarPubMed
Meisenzahl, EM, Schmitt, G, Gründer, G, Dresel, S, Frodl, T, la Fougère, C, Scheuerecker, J, Schwarz, M, Boerner, R, Stauss, J, Hahn, K, Möller, HJ (2008) Striatal D2/D3 receptor occupancy, clinical response and side effects with amisulpride: an iodine-123-iodobenzamide SPET study.CrossRefGoogle Scholar
Miller, R (1984) Major psychosis and dopamine: controversial features and some suggestions. Psychological Medicine 14, 779789.10.1017/S0033291700019759CrossRefGoogle ScholarPubMed
Morris, RW, Quail, S, Griffiths, KR, Green, MJ and Balleine, BW (2015) Corticostriatal control of goal-directed action is impaired in schizophrenia. Biological Psychiatry 77, 187195.10.1016/j.biopsych.2014.06.005CrossRefGoogle Scholar
Mucci, A, Dima, D, Soricelli, A, Volpe, U, Bucci, P, Frangou, S, Prinster, A, Salvatore, M, Galderisi, S and Maj, M (2015) Is avolition in schizophrenia associated with a deficit of dorsal caudate activity? A functional magnetic resonance imaging study during reward anticipation and feedback. Psychological Medicine 45, 17651778.CrossRefGoogle Scholar
Nestor, L, Hester, R and Garavan, H (2011) Increased ventral striatal BOLD activity during non-drug reward anticipation in cannabis users. NeuroImage 49, 11331143.10.1016/j.neuroimage.2009.07.022CrossRefGoogle Scholar
Nielsen, MO, Rostrup, E, Wulff, S, Bak, N, Broberg, BV, Lublin, H, Kapur, S and Glenthoj, B (2012 a) Improvement of brain reward abnormalities by antipsychotic monotherapy in schizophrenia. Archives of General Psychiatry 69, 11951204.CrossRefGoogle Scholar
Nielsen, , Rostrup, E, Wulff, S, Bak, N, Lublin, H, Kapur, S and Glenthøj, B (2012 b) Alterations of the brain reward system in antipsychotic naïve schizophrenia patients. Biological Psychiatry 71, 898905.CrossRefGoogle ScholarPubMed
Nielsen, MO, Rostrup, E, Wulff, S, Glenthøj, B and Ebdrup, BH (2016) Striatal reward activity and antipsychotic-associated weight change in patients with schizophrenia undergoing initial treatment. JAMA Psychiatry 73, 121128.CrossRefGoogle ScholarPubMed
Nielsen, , Rostrup, E, Broberg, BV, Wulff, S and Glenthøj, B (2018) Negative symptoms and reward disturbances in schizophrenia before and after antipsychotic monotherapy. Clinical EEG and Neuroscience 49, 3645.10.1177/1550059417744120CrossRefGoogle ScholarPubMed
Pessiglione, M, Seymour, B, Flandin, G, Dolan, RJ and Frith, CD (2006) Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442, 10421045.10.1038/nature05051CrossRefGoogle ScholarPubMed
Peters, J, Bromberg, U, Schneider, S, Brassen, S, Menz, M, Banaschewski, T, Conrod, PJ, Flor, H, Gallinat, J, Garavan, H, Heinz, A, Itterman, B, Lathrop, M, Martinot, JL, Paus, T, Poline, JB, Robbins, TW, Rietschel, M, Smolka, M, Ströhle, A, Struve, M, Loth, E, Schumann, G and Büchel, C (2011) Lower ventral striatal activation during reward anticipation in adolescent smokers. American Journal of Psychiatry 168, 540549.10.1176/appi.ajp.2010.10071024CrossRefGoogle ScholarPubMed
Radua, J, Schmidt, A, Borgwardt, S, Heinz, A, Schlagenhauf, F, McGuire, P and Fusar-Poli, P (2015) Ventral striatal activation during reward processing in psychosis a neurofunctional meta-analysis. JAMA Psychiatry 72, 12431251.CrossRefGoogle ScholarPubMed
Roiser, JP, Howes, OD, Chaddock, CA, Joyce, EM and McGuire, P (2013) Neural and behavioral correlates of aberrant salience in individuals at risk for psychosis. Schizophrenia Bulletin 39, 13281336.CrossRefGoogle ScholarPubMed
Schlagenhauf, F, Sterzer, P, Schmack, K, Ballmaier, M, Rapp, M, Wrase, J, Juckel, G, Gallinat, J and Heinz, A (2009) Reward feedback alterations in unmedicated schizophrenia patients: relevance for delusions. Biological Psychiatry 65, 10321039.CrossRefGoogle ScholarPubMed
Schlagenhauf, F, Huys, QJM, Deserno, L, Rapp, MA, Beck, A, Heinze, HJ, Dolan, R and Heinz, A (2014) Striatal dysfunction during reversal learning in unmedicated schizophrenia patients. NeuroImage 89, 171180.10.1016/j.neuroimage.2013.11.034CrossRefGoogle ScholarPubMed
Schoemaker, H, Claustre, Y, Fage, D, Rouquier, L, Chergui, K, Curet, O, Oblin, A, Gonon, F, Carter, C, Benavides, J and Scatton, B (1997) Neurochemical characteristics of amisulpride, an atypical dopamine D2/D3 receptor antagonist with both presynaptic and limbic selectivity. The Journal of Pharmacology and Experimental Therapeutics 280, 8397.Google ScholarPubMed
Schott, BH, Minuzzi, L, Krebs, RM, Elmenhorst, D, Lang, M, Winz, OH, Seidenbecher, CI, Coenen, HH, Heinze, H-J, Zilles, K, Duzel, E and Bauer, A (2008) Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. Journal of Neuroscience 28, 1431114319.10.1523/JNEUROSCI.2058-08.2008CrossRefGoogle ScholarPubMed
Schultz, W, Dayan, P and Montague, PR (1997) A neural substrate of prediction and reward. Science 275, 15931599.10.1126/science.275.5306.1593CrossRefGoogle Scholar
Seibyl, JP, Woods, SW, Zoghbi, SS, Baldwin, RM, Dey, HM, Goddard, AW, Zea-ponce, Y, Zubal, G, Germine, M, Smith, E, Heninger, GR, Charney, DS, Kung, HF, Alavi, A, Hoffer, PB and Innis, RB (1992). Dynamic SPECT imaging of dopamine D2 receptors in human subjects with. 33, 1964–1971.Google Scholar
Seibyl, JP, Zea-ponce, Y, Brenner, L, Baldwin, RM, Krystal, JH, Offord, SJ, Mochoviak, S, Charney, DS, Hoffer, PB and Innis, RB (1996) Continuous intravenous infusion of iodine-123- IBZM for SPECT determination of human brain dopamine receptor occupancy by antipsychotic agent RWJ-37796. J Nucl Med. 37, 1115.Google Scholar
Svarer, C, Madsen, K, Hasselbalch, SG, Pinborg, LH, Haugbøl, S, Frøkjær, VG, Holm, S, Paulson, OB and Knudsen, GM (2005) MR-based automatic delineation of volumes of interest in human brain PET images using probability maps. NeuroImage 24, 969979.10.1016/j.neuroimage.2004.10.017CrossRefGoogle ScholarPubMed
Thomsen, G, Knudsen, GM, Jensen, PS, Ziebell, M, Holst, KK, Asenbaum, S, Booij, J, Darcourt, J, Dickson, JC, Kapucu, ÖL, Nobili, F, Sabri, O, Sera, T, Tatsch, K, Tossici-Bolt, L, van Laere, K, Borght, TV, Varrone, A, Pagani, M and Pinborg, LH (2013) No difference in striatal dopamine transporter availability between active smokers, ex-smokers and non-smokers using [123I]FP-CIT (DaTSCAN) and SPECT. EJNMMI Research 3, 17.CrossRefGoogle Scholar
Urban, NBL, Slifstein, M, Meda, S, Xu, X, Ayoub, R, Medina, O, Pearlson, GD, Krystal, JH and Abi-Dargham, A (2012) Imaging human reward processing with positron emission tomography and functional magnetic resonance imaging. Psychopharmacology 221, 6777.10.1007/s00213-011-2543-6CrossRefGoogle ScholarPubMed
White, DM, Kraguljac, NV, Reid, MA and Lahti, AC (2015) Contribution of substantia nigra glutamate to prediction error signals in schizophrenia: a combined magnetic resonance spectroscopy/functional imaging study. npj Schizophrenia 1, 14001.10.1038/npjschz.2014.1CrossRefGoogle ScholarPubMed
Willendrup, P, Pinborg, LH, Hasselbalch, SG, Adams, KH, Stahr, K, Knudsen, GM and Svarer, C (2004) Assessment of the precision in co-registration of structural MR images and PET images with localized binding. International Congress Series 1265, 275280.CrossRefGoogle Scholar
Wulff, S, Pinborg, LH, Svarer, C, Jensen, LT, Nielsen, , Allerup, P, Bak, N, Rasmussen, H, Frandsen, E, Rostrup, E and Glenthøj, BY (2015) Striatal D2/3 binding potential values in drug-naïve first-episode schizophrenia patients correlate with treatment outcome. Schizophrenia Bulletin 41, 11431152.10.1093/schbul/sbu220CrossRefGoogle Scholar
Supplementary material: File

Wulff et al. supplementary material

Wulff et al. supplementary material 1

Download Wulff et al. supplementary material(File)
File 4.4 MB