Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T13:28:46.009Z Has data issue: false hasContentIssue false

The relationship between prolactin levels and clinical ratings in manic patients treated with oral and intravenous test doses of haloperidol

Published online by Cambridge University Press:  09 July 2009

J. C. Cookson*
Affiliation:
Academic Unit of Human Psychopharmacology and Department of Endocrinology, St Bartholomew's Hospital, London, Littlemore Hospital Research Unit, Oxford
P. J. A. Moult
Affiliation:
Academic Unit of Human Psychopharmacology and Department of Endocrinology, St Bartholomew's Hospital, London, Littlemore Hospital Research Unit, Oxford
D. Wiles
Affiliation:
Academic Unit of Human Psychopharmacology and Department of Endocrinology, St Bartholomew's Hospital, London, Littlemore Hospital Research Unit, Oxford
G. M. Besser
Affiliation:
Academic Unit of Human Psychopharmacology and Department of Endocrinology, St Bartholomew's Hospital, London, Littlemore Hospital Research Unit, Oxford
*
1Address for correspondence: Dr J. C. Cookson, The London Hospital (St Clement's), 2a Bow Road, London E3 4LL.

Synopsis

Twelve manic patients were treated for 2 weeks with oral haloperidol; in 6 patients treatment commenced with intravenous haloperidol, and intravenous ‘test’ doses were given after 1, 3–5 and 14 days of oral medication. From 24 hours to 14 days baseline serum prolactin levels rose towards a plateau, as did the improvement in clinical ratings. After the first intravenous test doses of haloperidol, prolactin levels peaked at 1 hour; however, they fell to a low point at 24 hours, and no response to further test doses was seen for 3–5 days. The response tended to return at 14 days. The mechanisms underlying the changes in prolactin levels, and in clinical state, are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Besser, G. M., Delitala, G., Grossman, A., Stubbs, W. A. & Yeo, T. (1980). Chlorpromazine, haloperidol, metoclopramide and domperidone release prolactin through dopamine antagonism at low concentrations but paradoxically inhibit prolactin release at high concentrations. British Journal of Pharmacology 71, 569573.CrossRefGoogle ScholarPubMed
Carlsson, A. (1977). Does dopamine play a role in schizophrenia? Psychological Medicine 7, 583597.CrossRefGoogle ScholarPubMed
Carlsson, A. & Lindqvist, M. (1963). Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacologia et Toxicologica 20, 140144.CrossRefGoogle ScholarPubMed
Caron, M. G., Beaulieu, M., Raymond, V., Gagne, B., Drovin, J., Lefkowitz, R. J. & Labrie, F. (1978). Dopaminergic receptors in the anterior pituitary gland. Journal of Biological Chemistry 253, 22442253.CrossRefGoogle ScholarPubMed
Cookson, J. C., Silverstone, T. & Wells, B. (1981). A double-blind comparative clinical trial of pimozide and chlorpromazine in mania: a test of the dopamine hypothesis. Acta Psychiatrica Scandinavica 64, 381397.CrossRefGoogle Scholar
Cookson, J. C., Silverstone, T. & Rees, L. H. (1982). Plasma prolactin and growth hormone levels in manic patients treated with pimozide. British Journal of Psychiatry 140, 274279.CrossRefGoogle ScholarPubMed
Denef, C. & Follebouckt, J. J. (1978). Differential effects of dopamine antagonists in prolactin secretion from cultured rat pituitary cells. Life Sciences 23, 431436.CrossRefGoogle ScholarPubMed
Denef, C., Van Neuten, J. M., Leysen, J. E. & Janssen, P. A. J. (1979). Evidence that pimozide is not a partial agonist of dopamine receptors. Life Sciences 25, 217226.CrossRefGoogle Scholar
Dufy, B., Vincent, J. D., Fleury, H., Du Pasquier, P., Gourdji, D. & Tixier-Vidal, A. (1979). Dopamine inhibition of action potentials in a prolactin-secreting cell line is modulated by oestrogen. Nature (London) 282, 855857.CrossRefGoogle Scholar
Friend, W. C., Brown, G. M., Jawahir, G., Lee, T. & Seeman, P. (1978). Effect of haloperidol and apomorphine treatment on dopamine receptors in pituitary and striatum. American Journal of Psychiatry 135, 839841.Google ScholarPubMed
Grandison, L. & Guidotti, A. (1979). Gamma-aminobutyric acid receptor function in rat anterior pituitary: evidence for control of prolactin release. Endocrinology 105, 754759.CrossRefGoogle ScholarPubMed
Grossman, A., Delitala, G., Yeo, T. & Besser, G. M. (1981). GABA and muscimol inhibit the release of prolactin from dispersed rat anterior pituitary cells. Neuroendocrinology 32, 145149.CrossRefGoogle ScholarPubMed
Gruen, P. H., Sachar, E. J., Langer, G., Altman, N., Leifer, M., Frantz, A. & Halpern, F. S. (1978). Prolactin responses to neuroleptics in normal and schizophrenic subjects. Archives of General Psychiatry 35, 108116.CrossRefGoogle ScholarPubMed
Gudelsky, G. A. (1981). Tubero-infundibular dopamine neurones and the regulation of prolactin secretion. Psychoneuroendocrinology 6, 316.CrossRefGoogle Scholar
Gudelsky, G. A., Annunziato, L. & Moore, K. E. (1978). Localisation of the site of haloperidol-induced, prolactin-mediated increase of dopamine turnover in the median eminence: studies in rats with complete hypothalamic deafferentations. Journal of Medical Transmission 42, 181192.Google ScholarPubMed
Kolakowska, T., Fraser, S., Franklin, M. & Knox, J. (1981 a). Neuroendocrine tests during treatment with neuroleptic drugs. Psychopharmacology 72, 283285.CrossRefGoogle ScholarPubMed
Kolakowska, T., Braddock, L., Wiles, D., Franklin, M. & Gelder, M. (1981 b). Neuroendocrine tests during treatment with neuroleptic drugs: I. Plasma prolactin response to haloperidol challenge. British Journal of Psychiatry 139, 400412.CrossRefGoogle ScholarPubMed
Lal, S. & Nair, N. P. V. (1980). Effects of neuroleptics on prolactin and growth hormone secretion in man. In Neuroactive Drugs in Endocrinology (ed. Müller, E. E.), pp. 223241. Elsevier/North Holland Biomedical Press: Amsterdam.Google Scholar
Langer, G., Sachar, E. J., Halpern, F. S., Gruen, P. H. & Solomon, M. (1977). The prolactin response to neuroleptic drugs. A test of dopaminergic blockade: neuroendocrine studies in normal man. Journal of Clinical Endocrinology and Metabolism 45, 9961002.CrossRefGoogle Scholar
MacLeod, R. M. & Lamberts, S. W. J. (1978). The biphasic regulation of prolactin secretion by dopamine agonist–antagonists. Endocrinology 103, 200203.CrossRefGoogle ScholarPubMed
McNeilly, A. (1973). Radioimmunoassay of human prolactin. Proceedings of the Royal Society of Medicine 66, 863864.CrossRefGoogle ScholarPubMed
Meltzer, H. Y., Busch, D. & Fang, V. S. (1981). Hormones, dopamine receptors and schizophrenia. Psychoneuroendocrinology 6. 1736.CrossRefGoogle ScholarPubMed
Michiels, M., Hendriks, R. & Heykants, J. (1976). In Haloperidol Radioimmunoassay Kit, Instructions for Use. IRE.: Fleurus, Belgium.Google Scholar
Müller, E. E., Apud, J., Cocchi, D., Casanueva, F., Locatelli, V., Civati, C., Nistico, G. & Racagni, G. (1980). An hypothalamic hypophysiotropic GABAergic system: analogy with the tuberoinfundibular system. In Progress in Psychoneuroendocrinology (ed. Brambilla, F.Racagni, G. and De Wied, D.), pp. 655665. Elsevier/North-Holland Biomedical Press: Amsterdam.Google Scholar
Öhman, R., Forsman, A. & Larsson, M. (1980). Prolactin response to haloperidol after a single dose and during prolonged administration. Current Therapeutic Research 27, 137143.Google Scholar
Peroutka, S. J. & Snyder, S. H. (1980). Relationship of neuroleptic drug effects at brain dopamine, serotonin, α-adrenergic and histamine receptors to clinical potency. American Journal of Psychiatry 137, 15181522.Google ScholarPubMed
Petterson, U., Fyro, B. & Sedvall, G. (1973). A new scale for the longitudinal rating of manic states. Acta Psychiatrica Scandinavica 49, 248256.CrossRefGoogle ScholarPubMed
Post, R. M., Jimerson, D. C., Bunney, W. E. Jr & Goodwin, F. K. (1980). Dopamine and mania: behavioural and biochemical effects of the dopamine receptor blocker pimozide. Psychopharmacology 67, 297305.CrossRefGoogle ScholarPubMed
Randrup, A., Munkvad, I., Fog, R., Gerlach, J., Molander, L., Kjellberg, B. & Scheel-Kruger, J. (1975). Mania, depression and brain dopamine. Current Developments in Psychopharmacology 2, 207247.Google Scholar
Rao, V. A. R., Bishop, M. & Coppen, A. (1980). Clinical state, plasma levels of haloperidol and prolactin: a correlation study in chronic schizophrenia. British Journal of Psychiatry 137, 518521.CrossRefGoogle ScholarPubMed
Rosenberg, P. & Bartels, E. (1967). Drug effects on the spontaneous electrical activity of the squid giant axon. Journal of Pharmacology and Experimental Therapeutics 155, 532544.Google ScholarPubMed
Rubin, R. T. & Hays, S. E. (1979). Variability of prolactin response to intravenous and intramuscular haloperidol in normal adult men. Psychopharmacology 61, 1724.CrossRefGoogle ScholarPubMed
Rubin, R. T. & Hays, S. E. (1980). The prolactin secretory response to neuroleptic drugs: mechanisms, applications and limitations. Psychoneuroendocrinology 5, 121137.CrossRefGoogle ScholarPubMed
Rubin, R. T., Forsman, A., Heykants, J., Öhman, R., Tower, B. & Michiels, M. (1980). Serum haloperidol determinations in psychiatric patients. Archives of General Psychiatry 37, 10691074.CrossRefGoogle ScholarPubMed
Seeman, P. (1972). The membrane actions of anaesthetics and tranquillizers. Pharmacological Reviews 24, 583655.Google Scholar
Spitzer, R. L., Endicott, J. & Robins, E. (1978). Research Diagnostic Criteria (RDC). Biometrics Research, New York State Psychiatric Institute: New York.Google Scholar
Taraskevich, P. S. & Douglas, W. W. (1978). Catecholamines of supposed inhibitory hypophysiotropic function suppress action potentials in prolactin cells. Nature (London) 276, 832834.CrossRefGoogle Scholar
Thorner, M. O., Hackett, J. T., Murad, F. & MacLeod, R. M. (1980). Calcium rather than cyclic AMP as the physiological intracellular regulator of prolactin release. Neuroendocrinology 31, 390402.CrossRefGoogle ScholarPubMed
West, B. & Dannies, P. S. (1979). Antipsychotic drugs inhibit prolactin release from rat anterior pituitary cells in culture by a mechanism not involving the dopamine receptor. Endocrinology 104, 877880.CrossRefGoogle Scholar
Wiles, D., Franklin, M., Dencker, S. J., Johansson, R., Lundin, L. & Malru, V. (1980). Plasma fluphenazine and prolactin levels in schizophrenic patients during treatment with low and high doses of fluphenazine enanthate. Psychopharmacology 71, 131136.CrossRefGoogle ScholarPubMed