Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T21:30:04.745Z Has data issue: false hasContentIssue false

Reward disturbances in antipsychotic-naïve patients with first-episode psychosis and their association to glutamate levels

Published online by Cambridge University Press:  26 August 2021

Karen Tangmose*
Affiliation:
Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Egill Rostrup
Affiliation:
Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, University of Copenhagen, Glostrup, Denmark
Kirsten B Bojesen
Affiliation:
Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
Anne Sigvard
Affiliation:
Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Kasper Jessen
Affiliation:
Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
Louise Baruël Johansen
Affiliation:
Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark
Birte Y. Glenthøj
Affiliation:
Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
Mette Ødegaard Nielsen
Affiliation:
Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center Glostrup, Glostrup, Denmark Department of Clinical Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
*
Author for correspondence: Karen Tangmose, E-mail: karen.tangmose@regionh.dk

Abstract

Background

Aberrant anticipation of motivational salient events and processing of outcome evaluation in striatal and prefrontal regions have been suggested to underlie psychosis. Altered glutamate levels have likewise been linked to schizophrenia. Glutamatergic abnormalities may affect the processing of motivational salience and outcome evaluation. It remains unresolved, whether glutamatergic dysfunction is associated with the coding of motivational salience and outcome evaluation in antipsychotic-naïve patients with first-episode psychosis.

Methods

Fifty-one antipsychotic-naïve patients with first-episode psychosis (22 ± 5.2 years, female/male: 31/20) and 52 healthy controls (HC) matched on age, sex, and parental education underwent functional magnetic resonance imaging and magnetic resonance spectroscopy (3T) in one session. Brain responses to motivational salience and negative outcome evaluation (NOE) were examined using a monetary incentive delay task. Glutamate levels were estimated in the left thalamus and anterior cingulate cortex using LCModel.

Results

Patients displayed a positive signal change to NOE in the caudate (p = 0.001) and dorsolateral prefrontal cortex (DLPFC; p = 0.003) compared to HC. No group difference was observed in motivational salience or in levels of glutamate. There was a different association between NOE signal in the caudate and DLPFC and thalamic glutamate levels in patients and HC due to a negative correlation in patients (caudate: p = 0.004, DLPFC: p = 0.005) that was not seen in HC.

Conclusions

Our findings confirm prior findings of abnormal outcome evaluation as a part of the pathophysiology of schizophrenia. The results also suggest a possible link between thalamic glutamate and NOE signaling in patients with first-episode psychosis.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avery, S. N., McHugo, M., Armstrong, K., Blackford, J. U., Woodward, N. D., & Heckers, S. (2019). Disrupted habituation in the early stage of psychosis. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(11), 10041012. https://doi.org/10.1016/j.bpsc.2019.06.007.Google ScholarPubMed
Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage, 76, 412427. https://doi.org/10.1016/j.neuroimage.2013.02.063.CrossRefGoogle ScholarPubMed
Bojesen, K. B., Broberg, B. V., Fagerlund, B., Jessen, K., Thomas, M. B., Sigvard, A.. (2020). Associations between cognitive function and levels of glutamatergic metabolites and gamma-aminobutyric acid in antipsychotic-naïve patients with schizophrenia or psychosis. Biological Psychiatry, 89(7), 110. https://doi.org/10.1016/j.biopsych.2020.06.027.Google ScholarPubMed
Bojesen, K. B., Ebdrup, B. H., Jessen, K., Sigvard, A., Tangmose, K., Edden, R. A. E., … Glenthøj, B. Y. (2019). Treatment response after 6 and 26 weeks is related to baseline glutamate and GABA levels in antipsychotic-naïve patients with psychosis. Psychological Medicine, 50(13), 21822193. https://doi.org/10.1017/S0033291719002277.CrossRefGoogle ScholarPubMed
Boksem, M. A. S., Tops, M., Kostermans, E., & De Cremer, D. (2008). Sensitivity to punishment and reward omission: Evidence from error-related ERP components. Biological Psychology, 79(2), 185192. https://doi.org/10.1016/j.biopsycho.2008.04.010.CrossRefGoogle ScholarPubMed
Bossong, M. G., Wilson, R., Appiah-Kusi, E., McGuire, P., & Bhattacharyya, S. (2018). Human striatal response to reward anticipation linked to hippocampal glutamate levels. International Journal of Neuropsychopharmacology, 21, 623630. https://doi.org/10.1093/ijnp/pyy011.CrossRefGoogle ScholarPubMed
Bustillo, J. R., Rowland, L. M., Mullins, P., Jung, R., Chen, H., Qualls, C., … Lauriello, J. (2010). 1H-MRS at 4 Tesla in minimally treated early schizophrenia. Molecular Psychiatry, 15(6), 629636. https://doi.org/10.1038/mp.2009.121.CrossRefGoogle ScholarPubMed
Cadena, E. J., White, D. M., Kraguljac, N. V, Reid, M. A., Maximo, J. O., Nelson, E. A., … Lahti, A. C. (2018). A longitudinal multimodal neuroimaging study to examine relationships between resting state glutamate and task related BOLD response in schizophrenia. Frontiers in Psychiatry, 9(November), 111. https://doi.org/10.3389/fpsyt.2018.00632.CrossRefGoogle ScholarPubMed
Carlsson, A., Waters, N., & Carlsson, M. L. (1999). Neurotransmitter interactions in schizophrenia – therapeutic implications. Biological Psychiatry, Suppl 4, IV/37IV/43. https://doi.org/dx.doi.org/10.1016/S0006-3223(99)00117-1.Google Scholar
Corlett, P. R., Honey, G. D., Aitken, M. R. F., Dickinson, A., Shanks, D. R., Absalom, A. R., … Fletcher, P. C. (2006). Frontal responses during learning predict vulnerability to the psychotogenic effects of ketamine. Archives of General Psychiatry, 63(6), 611. https://doi.org/10.1001/archpsyc.63.6.611.CrossRefGoogle Scholar
Corlett, P. R., Honey, G. D., Krystal, J. H., & Fletcher, P. C. (2010). Glutamatergic model psychoses: Prediction error, learning, and inference. Neuropsychopharmacology, 36(1), 294315. https://doi.org/10.1038/npp.2010.163.CrossRefGoogle ScholarPubMed
Dandash, O., Pantelis, C., & Fornito, A. (2017). Dopamine, fronto-striato-thalamic circuits and risk for psychosis. Schizophrenia Research, 180, 4857. https://doi.org/10.1016/j.schres.2016.08.020.CrossRefGoogle ScholarPubMed
Delgado, M. R., Nystrom, L. E., Fissell, C., Noll, D. C., & Fiez, J. A. (2000). Tracking the hemodynamic responses to reward and punishment in the striatum. Journal of Neurophysiology, 84(6), 30723077. https://doi.org/10.1152/jn.2000.84.6.3072.CrossRefGoogle ScholarPubMed
Diederen, K. M. J., & Fletcher, P. C. (2020). Dopamine, prediction error and beyond. The Neuroscientist, 27, 107385842090759. https://doi.org/10.1177/1073858420907591.Google ScholarPubMed
Dunsmoor, J. E., Bandettini, P. A., & Knight, D. C. (2008). Neural correlates of unconditioned response diminution during Pavlovian conditioning. NeuroImage, 40(2), 811817. https://doi.org/10.1016/j.neuroimage.2007.11.042.CrossRefGoogle ScholarPubMed
Egerton, A., & Stone, J. M. (2012). The glutamate hypothesis of schizophrenia: Neuroimaging and drug development. Current Pharmaceutical Biotechnology, 13, 15001512. https://doi.org/10.2174/138920112800784961.CrossRefGoogle ScholarPubMed
Ermakova, A. O., Knolle, F., Justicia, A., Bullmore, E. T., Jones, P. B., Robbins, T. W., … Murray, G. K. (2018). Abnormal reward prediction-error signalling in antipsychotic naive individuals with first-episode psychosis or clinical risk for psychosis. Neuropsychopharmacology, 43(8), 16911699. https://doi.org/10.1038/s41386-018-0056-2.CrossRefGoogle ScholarPubMed
Esslinger, C., Englisch, S., Inta, D., Rausch, F., Schirmbeck, F., Mier, D., … Zink, M. (2012). Ventral striatal activation during attribution of stimulus saliency and reward anticipation is correlated in unmedicated first episode schizophrenia patients. Schizophrenia Research, 140(1–3), 114121. https://doi.org/10.1016/j.schres.2012.06.025.CrossRefGoogle ScholarPubMed
Falkenberg, L. E., Westerhausen, R., Craven, A. R., Johnsen, E., Kroken, R. A., LØberg, E. M., … Hugdahl, K. (2014). Impact of glutamate levels on neuronal response and cognitive abilities in schizophrenia. NeuroImage: Clinical, 4, 576584. https://doi.org/10.1016/j.nicl.2014.03.014.CrossRefGoogle ScholarPubMed
Fletcher, P. C., & Frith, C. D. (2009). Perceiving is believing: A Bayesian approach to explaining the positive symptoms of schizophrenia. Nature Reviews Neuroscience, 10(1), 4858. https://doi.org/10.1038/nrn2536.CrossRefGoogle ScholarPubMed
Fusar-Poli, P., Stone, J. M., Broome, M. R., Valli, I., Mechelli, A., McLean, M. A., … McGuire, P. K. (2011). Thalamic glutamate levels as a predictor of cortical response during executive functioning in subjects at high risk for psychosis. Archives of General Psychiatry, 68(9), 881890. https://doi.org/10.1001/archgenpsychiatry.2011.46.CrossRefGoogle ScholarPubMed
Garrison, J., Erdeniz, B., & Done, J. (2013). Prediction error in reinforcement learning: A meta-analysis of neuroimaging studies. Neuroscience and Biobehavioral Reviews, 37(7), 12971310. https://doi.org/10.1016/j.neubiorev.2013.03.023.CrossRefGoogle ScholarPubMed
Gleich, T., Lorenz, R. C., Pöhland, L., Raufelder, D., Deserno, L., Beck, A., … Gallinat, J. (2015). Frontal glutamate and reward processing in adolescence and adulthood. Brain Structure and Function, 220(6), 30873099. https://doi.org/10.1007/s00429-014-0844-3.CrossRefGoogle ScholarPubMed
Haarsma, J., Fletcher, P. C., Griffin, J. D., Taverne, H. J., Ziauddeen, H., Spencer, T. J., … Murray, G. K. (2020). Precision weighting of cortical unsigned prediction error signals benefits learning, is mediated by dopamine, and is impaired in psychosis. Molecular Psychiatry. https://doi.org/10.1038/s41380-020-0803-8.Google ScholarPubMed
Haber, S. N., & Knutson, B. (2009). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35(10), 426. https://doi.org/10.1038/npp.2009.129.CrossRefGoogle Scholar
Heinz, A. (2002). Dopaminergic dysfunction in alcoholism and schizophrenia – psychopathological and behavioral correlates. European Psychiatry, 17(1), 916. https://doi.org/10.1016/S0924-9338(02)00628-4.CrossRefGoogle ScholarPubMed
Heinz, A., Murray, G. K., Schlagenhauf, F., Sterzer, P., Grace, A. A., & Waltz, J. A. (2019). Towards a unifying cognitive, neurophysiological, and computational neuroscience account of schizophrenia. Schizophrenia Bulletin, 45(5), 10921100. https://doi.org/10.1093/schbul/sby154.CrossRefGoogle Scholar
Honey, G. D., Honey, R. A. E., Sharar, S. R., Turner, D. C., Pomarol-Clotet, E., Kumaran, D., … Fletcher, P. C. (2005). Impairment of specific episodic memory processes by sub-psychotic doses of ketamine: The effects of levels of processing at encoding and of the subsequent retrieval task. Psychopharmacology, 181(3), 445457. https://doi.org/10.1007/s00213-005-0001-z.CrossRefGoogle ScholarPubMed
Iwata, Y., Nakajima, S., Plitman, E., Mihashi, Y., Caravaggio, F., Chung, J. K., … Graff-Guerrero, A. (2018). Neurometabolite levels in antipsychotic-naïve/free patients with schizophrenia: A systematic review and meta-analysis of 1H-MRS studies. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 86(March), 340352. https://doi.org/10.1016/j.pnpbp.2018.03.016.CrossRefGoogle Scholar
Jensen, J., Willeit, M., Zipursky, R. B., Savina, I., Smith, A. J., Menon, M., … Kapur, S. (2008). The formation of abnormal associations in schizophrenia: Neural and behavioral evidence. Neuropsychopharmacology, 33(3), 473479. https://doi.org/10.1038/sj.npp.1301437.CrossRefGoogle ScholarPubMed
Jocham, G., Hunt, L. T., Near, J., & Behrens, T. E. J. (2014). A mechanism for value-guided choice based on the excitation-inhibition balance in prefrontal cortex. Nature Neuroscience, 15(7), 960961. https://doi.org/10.1038/nn.3140.A.CrossRefGoogle Scholar
Kapur, S. (2003). Psychosis as a state of aberrant salience: A framework linking biology, phenomenology, and pharmacology in schizophrenia. American Journal of Psychiatry, 160(1), 1323. https://doi.org/10.1176/appi.ajp.160.1.13.CrossRefGoogle ScholarPubMed
Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261276. https://doi.org/10.1093/schbul/13.2.261.CrossRefGoogle ScholarPubMed
Kegeles, L. S., Mao, X., Stanford, A. D., Girgis, R., Ojeil, N., Xu, X., … Shungu, D. C. (2012). Elevated prefrontal cortex γ-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy. Archives of General Psychiatry, 69(5), 449459. https://doi.org/10.1001/archgenpsychiatry.2011.1519.Google ScholarPubMed
Kim, H., Shimojo, S., & O'Doherty, J. P. (2006). Is avoiding an aversive outcome rewarding? Neural substrates of avoidance learning in the human brain. PLoS Biology, 4(8), 14531461. https://doi.org/10.1371/journal.pbio.0040233.CrossRefGoogle ScholarPubMed
Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. The Journal of Neuroscience, 21(16), RC159. https://doi.org/10.1523/jneurosci.21-16-j0002.2001.CrossRefGoogle ScholarPubMed
Knutson, B., Fong, G. W., Bennett, S. M., Adams, C. M., & Hommer, D. (2003). A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: Characterization with rapid event-related fMRI. NeuroImage, 18(2), 263272. https://doi.org/10.1016/S1053-8119(02)00057-5.CrossRefGoogle ScholarPubMed
Knutson, B., Westdorp, A., Kaiser, E., & Hommer, D. (2000). FMRI visualization of brain activity during a monetary incentive delay task. NeuroImage, 12(1), 2027. https://doi.org/10.1006/nimg.2000.0593.CrossRefGoogle ScholarPubMed
Koch, K., Schachtzabel, C., Wagner, G., Schikora, J., Schultz, C., Reichenbach, J. R., … Schlösser, R. G. M. (2010). Altered activation in association with reward-related trial-and-error learning in patients with schizophrenia. NeuroImage, 50(1), 223232. https://doi.org/10.1016/j.neuroimage.2009.12.031.CrossRefGoogle ScholarPubMed
Maia, T. V., & Frank, M. J. (2017). An integrative perspective on the role of dopamine in schizophrenia. Biological Psychiatry, 81, 5266. https://doi.org/10.1016/j.biopsych.2016.05.021.CrossRefGoogle ScholarPubMed
Marsman, A., Van Den Heuvel, M. P., Klomp, D. W. J., Kahn, R. S., Luijten, P. R., & Hulshoff Pol, H. E. (2013). Glutamate in schizophrenia: A focused review and meta-analysis of 1H-MRS studies. Schizophrenia Bulletin, 39(1), 120129. https://doi.org/10.1093/schbul/sbr069.CrossRefGoogle ScholarPubMed
Matsumoto, M. (2008). Representation of negative motivational value in the primate lateral habenula. Nature Neuroscience, 12(1), 7784. https://doi.org/10.1038/nn.2233.Representation.CrossRefGoogle ScholarPubMed
Matsumoto, M., & Hikosaka, O. (2007). Lateral habenula as a source of negative reward signals in dopamine neurons. Nature, 447(7148), 11111115. https://doi.org/10.1038/nature05860.CrossRefGoogle ScholarPubMed
Matsumoto, N., Minamimoto, T., Graybiel, A. M., & Kimura, M. (2001). Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. Journal of Neurophysiology, 85(2), 960976. https://doi.org/10.1152/jn.2001.85.2.960.CrossRefGoogle ScholarPubMed
Merritt, K., Egerton, A., Kempton, M. J., Taylor, M. J., & McGuire, P. K. (2016). Nature of glutamate alterations in schizophrenia. JAMA Psychiatry, 73(7), 665. https://doi.org/10.1001/jamapsychiatry.2016.0442.CrossRefGoogle ScholarPubMed
Mikhael, J. G., & Bogacz, R. (2016). Learning reward uncertainty in the basal ganglia. PLoS Computational Biology, 12(9), 128. https://doi.org/10.1371/journal.pcbi.1005062.CrossRefGoogle ScholarPubMed
Moghaddam, B., & Javitt, D. (2012). From revolution to evolution: The glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology, 37, 415. https://doi.org/10.1038/npp.2011.181.CrossRefGoogle ScholarPubMed
Morris, R. W., Vercammen, A., Lenroot, R., Moore, L., Langton, J. M., Short, B., … Weickert, T. W. (2012). Disambiguating ventral striatum fMRI-related bold signal during reward prediction in schizophrenia. Molecular Psychiatry, 17(3), 280289. https://doi.org/10.1038/mp.2011.75.CrossRefGoogle ScholarPubMed
Murray, G. K., Corlett, P. R., Clark, L., Pessiglione, M., Blackwell, A. D., Honey, G., … Fletcher, P. C. (2008). Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Molecular Psychiatry, 13(3), 267276. https://doi.org/10.1038/sj.mp.4002058.CrossRefGoogle ScholarPubMed
Nanda, B., Galvan, A., Smith, Y., & Wichmann, T. (2009). Effects of stimulation of the centromedian nucleus of the thalamus on the activity of striatal cells in awake rhesus monkeys. European Journal of Neuroscience, 29(3), 588598. https://doi.org/10.1111/j.1460-9568.2008.06598.x.CrossRefGoogle ScholarPubMed
Nielsen, M. Ø., Rostrup, E., Broberg, B. V., Wulff, S., & Glenthøj, B. (2018). Negative symptoms and reward disturbances in schizophrenia before and after antipsychotic monotherapy. Clinical EEG and Neuroscience, 49(1), 3645. https://doi.org/10.1177/1550059417744120.CrossRefGoogle ScholarPubMed
Nielsen, M. Ø., Rostrup, E., Wulff, S., Bak, N., Lublin, H., Kapur, S., & Glenthøj, B. (2012). Alterations of the brain reward system in antipsychotic nave schizophrenia patients. Biological Psychiatry, 71(10), 898905. https://doi.org/10.1016/j.biopsych.2012.02.007.CrossRefGoogle Scholar
Nielsen, M. Ø., Rostrup, E., Wulff, S., Glenthøj, B., & Ebdrup, B. H. (2016). Striatal reward activity and antipsychotic-associated weight change in patients with schizophrenia undergoing initial treatment. JAMA Psychiatry, 73(2), 121. https://doi.org/10.1001/jamapsychiatry.2015.2582.CrossRefGoogle ScholarPubMed
O'Gorman, R. L., Michels, L., Edden, R. A., Murdoch, J. B., & Martin, E. (2011). In vivo detection of GABA and glutamate with MEGA-PRESS: Reproducibility and gender effects. Journal of Magnetic Resonance Imaging, 33(5), 12621267. https://doi.org/10.1002/jmri.22520.CrossRefGoogle ScholarPubMed
Oldham, S., Murawski, C., Fornito, A., Youssef, G., Yücel, M., & Lorenzetti, V. (2018). The anticipation and outcome phases of reward and loss processing: A neuroimaging meta-analysis of the monetary incentive delay task. Human Brain Mapping, 39(8), 33983418. https://doi.org/10.1002/hbm.24184.CrossRefGoogle ScholarPubMed
Olney, J. W., & Farber, N. B. (1995). Glutamate receptor dysfunction and schizophrenia. Archives of General Psychiatry, 52, 9981007. https://doi.org/10.1001/archpsyc.1995.03950240016004.CrossRefGoogle ScholarPubMed
Provencher, S. W. (1993). Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magnetic Resonance in Medicine, 30(6), 672679. https://doi.org/10.1002/mrm.1910300604.CrossRefGoogle ScholarPubMed
Radua, J., Schmidt, A., Borgwardt, S., Heinz, A., Schlagenhauf, F., McGuire, P., & Fusar-Poli, P. (2015). Ventral striatal activation during reward processing in psychosis a neurofunctional meta-analysis. JAMA Psychiatry, 72(12), 12431251. https://doi.org/10.1001/jamapsychiatry.2015.2196CrossRefGoogle ScholarPubMed
Reid, M. A., Salibi, N., White, D. M., Gawne, T. J., Denney, T. S., & Lahti, A. C. (2019). 7T proton magnetic resonance spectroscopy of the anterior cingulate cortex in first-episode schizophrenia. Schizophrenia Bulletin, 45(1), 180189. https://doi.org/10.1093/schbul/sbx190.CrossRefGoogle ScholarPubMed
Robison, A. J., Thakkar, K. N., & Diwadkar, V. A. (2020). Cognition and reward circuits in schizophrenia: Synergistic, not separate. Biological Psychiatry, 87(3), 204214. https://doi.org/10.1016/j.biopsych.2019.09.021.CrossRefGoogle Scholar
Schlagenhauf, F., Sterzer, P., Schmack, K., Ballmaier, M., Rapp, M., Wrase, J., … Heinz, A. (2009). Reward feedback alterations in unmedicated schizophrenia patients: Relevance for delusions. Biological Psychiatry, 65(12), 10321039. https://doi.org/10.1016/j.biopsych.2008.12.016.CrossRefGoogle ScholarPubMed
Schultz, W., & Dickinson, A. (2000). Neuronal coding of prediction errors. Annual Review of Neuroscience, 23(1), 473500. https://doi.org/10.1146/annurev.neuro.23.1.473.CrossRefGoogle ScholarPubMed
Stone, J. M., Dietrich, C., Edden, R., Mehta, M. A., De Simoni, S., Reed, L. J., … Barker, G. J. (2012). Ketamine effects on brain GABA and glutamate levels with 1H-MRS: Relationship to ketamine-induced psychopathology. Molecular Psychiatry, 17, 664665. https://doi.org/10.1038/mp.2011.171.CrossRefGoogle ScholarPubMed
Théberge, J., Bartha, R., Drost, D. J., Menon, R. S., Malla, A., Takhar, J., … Williamson, P. C. (2002). Glutamate and glutamine measured with 4.0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers. American Journal of Psychiatry, 159(11), 19441946. https://doi.org/10.1176/appi.ajp.159.11.1944.CrossRefGoogle ScholarPubMed
Théberge, J., Williamson, K. E., Aoyama, N., Drost, D. J., Manchanda, R., Malla, A. K., … Williamson, P. C. (2007). Longitudinal grey-matter and glutamatergic losses in first-episode schizophrenia. British Journal of Psychiatry, 191(Oct.), 325334. https://doi.org/10.1192/bjp.bp.106.033670.CrossRefGoogle ScholarPubMed
Uldall, S. W., Nielsen, M. Ø., Carlsson, J., Glenthøj, B., Siebner, H. R., Madsen, K. H., … Rostrup, E. (2020). Associations of neural processing of reward with posttraumatic stress disorder and secondary psychotic symptoms in trauma-affected refugees. European Journal of Psychotraumatology, 11(1). https://doi.org/10.1080/20008198.2020.1730091.CrossRefGoogle ScholarPubMed
Vinckier, F., Gaillard, R., Palminteri, S., Rigoux, L., Salvador, A., Fornito, A., … Fletcher, P. C. (2016). Confidence and psychosis: A neuro-computational account of contingency learning disruption by NMDA blockade. Molecular Psychiatry, 21(7), 946955. https://doi.org/10.1038/mp.2015.73.CrossRefGoogle ScholarPubMed
Walter, H., Kammerer, H., Frasch, K., Spitzer, M., & Abler, B. (2009). Altered reward functions in patients on atypical antipsychotic medication in line with the revised dopamine hypothesis of schizophrenia. Psychopharmacology, 206(1), 121132. https://doi.org/10.1007/s00213-009-1586-4.CrossRefGoogle ScholarPubMed
Waltz, J. A., Schweitzer, J. B., Ross, T. J., Kurup, P. K., Salmeron, B. J., Rose, E. J., … Stein, E. A. (2010). Abnormal responses to monetary outcomes in cortex, but not in the basal ganglia, in schizophrenia. Neuropsychopharmacology, 35(12), 24272439. https://doi.org/10.1038/npp.2010.126.CrossRefGoogle Scholar
Waltz, J. A., Xu, Z., Brown, E. C., Ruiz, R. R., Frank, M. J., & Gold, J. M. (2018). Motivational deficits in schizophrenia are associated with reduced differentiation between gain and loss-avoidance feedback in the striatum. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(3), 239247. https://doi.org/10.1016/j.bpsc.2017.07.008.Google ScholarPubMed
Wang, A. M., Pradhan, S., Coughlin, J. M., Trivedi, A., Dubois, S. L., Crawford, J. L., … Barker, P. B. (2019). Assessing brain metabolism with 7-T proton magnetic resonance spectroscopy in patients with first-episode psychosis. JAMA Psychiatry, 76(3), 314323. https://doi.org/10.1001/jamapsychiatry.2018.3637.CrossRefGoogle ScholarPubMed
Weckmann, K., Deery, M. J., Howard, J. A., Feret, R., Asara, J. M., Dethloff, F., … Turck, C. W. (2019). Ketamine's effects on the glutamatergic and GABAergic systems: A proteomics and metabolomics study in mice. Molecular Neuropsychiatry, 5(1), 4251. https://doi.org/10.1159/000493425.Google ScholarPubMed
White, D. M., Kraguljac, N. V., Reid, M. A., & Lahti, A. C. (2015). Contribution of substantia nigra glutamate to prediction error signals in schizophrenia: A combined magnetic resonance spectroscopy/functional imaging study. Npj Schizophrenia, 1(1), 17. https://doi.org/10.1038/npjschz.2014.1.CrossRefGoogle ScholarPubMed
Worsley, K. J. (2001). Statistical analysis of activation images. In Jezzard, P., Matthews, P. M., & Smith, S. M. (Eds.), Functional MRI: An introduction to methods (pp. 251270). Oxford University Press.Google Scholar
Zimmerman, E. C., & Grace, A. A. (2016). The nucleus reuniens of the midline thalamus gates prefrontal-hippocampal modulation of ventral tegmental area dopamine neuron activity. Journal of Neuroscience, 36(34), 89778984. https://doi.org/10.1523/JNEUROSCI.1402-16.2016.CrossRefGoogle ScholarPubMed
Zink, C. F., Pagnoni, G., Martin-skurski, M. E., Chappelow, J. C., & Berns, G. S. (2004). Human striatal responses to monetary reward depend on saliency. Neuron, 42, 509517.CrossRefGoogle ScholarPubMed
Zink, C. F., Pagnoni, G., Martin, M. E., Dhamala, M., & Berns, G. S. (2003). Human striatal response to salient nonrewarding stimuli. The Journal of Neuroscience, 23(22), 80928097. https://doi.org/10.1523/JNEUROSCI.23-22-08092.2003.CrossRefGoogle ScholarPubMed
Supplementary material: File

Tangmose et al. supplementary material

Tangmose et al. supplementary material

Download Tangmose et al. supplementary material(File)
File 2.5 MB