Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-07T19:20:25.209Z Has data issue: false hasContentIssue false

Maximum Likelihood Estimation of Latent Interaction Effects with the LMS Method

Published online by Cambridge University Press:  01 January 2025

Andreas Klein*
Affiliation:
Johann Wolfgang Goethe-University, Frankfurt Am Main, Germany
Helfried Moosbrugger
Affiliation:
Johann Wolfgang Goethe-University, Frankfurt Am Main, Germany
*
Requests for reprints should be sent to Andreas Klein, Department of Psychology, Mertonstrasse 17, D-60054 Frankfurt am Main, Germany. E-Mail: a.klein@psych.uni-frankfurt.de

Abstract

In the context of structural equation modeling, a general interaction model with multiple latent interaction effects is introduced. A stochastic analysis represents the nonnormal distribution of the joint indicator vector as a finite mixture of normal distributions. The Latent Moderated Structural Equations (LMS) approach is a new method developed for the analysis of the general interaction model that utilizes the mixture distribution and provides a ML estimation of model parameters by adapting the EM algorithm. The finite sample properties and the robustness of LMS are discussed. Finally, the applicability of the new method is illustrated by an empirical example.

Type
Original Paper
Copyright
Copyright © 2000 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research has been supported by a grant from the Deutsche Forschungsgemeinschaft, Germany, No. Mo 474/1 and Mo 474/2. The data for the empirical example have been provided by Andreas Thiele of the University of Frankfurt, Germany. The authors are indebted to an associate editor and to three anonymous reviewers of Psychometrika whose comments and suggestions have been very helpful.

References

Abramowitz, M., Stegun, I. A. (1971). Handbook of mathematical functions. New York, NY: Dover PublicationsGoogle Scholar
Aiken, L. S., West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park: SAGE PublicationsGoogle Scholar
Arbuckle, J. L. (1997). AMOS Users' Guide Version 3.6. Chicago: Small Waters CorporationGoogle Scholar
Bentler, P. M. (1995). EQS structural equations program manual. Encino, CA: Multivariate SoftwareGoogle Scholar
Bentler, P. M., Wu, E. J. C. (1993). EQS/Windows user's guide. Los Angeles: BMDP Statistical SoftwareGoogle Scholar
Bollen, K. A. (1995). Structural equation models that are nonlinear in latent variables. In Marsden, P. V. (Eds.), Sociological methodology 1995 (Vol. 25). Washington, DC: American Sociological AssociationGoogle Scholar
Bollen, K. A. (1996). An alternative two stage least squares (2SLS) estimator for latent variable equations. Psychometrika, 61, 109121CrossRefGoogle Scholar
Brandstädter, J., Renner, G. (1990). Tenacious goal pursuit and flexible goal adjustment: Explication and age-related analysis of assimilative and accomodative strategies of coping. Psychology and Aging, 5, 5867CrossRefGoogle Scholar
Cohen, J., Cohen, P. (1975). Applied multiple regression/correlation analyses for the behavioral sciences. Hillsdale, NJ: ErlbaumGoogle Scholar
Degenhardt, A., Schmidt, H. (1994). Physische Leistungsvariablen als Indikatoren für die Diagnose “Klimakterium Virile” (Physical efficiency variables as indicators for the diagnosis of ‘climacterium virile’). Sexuologie, 3, 131141CrossRefGoogle Scholar
Dempster, A.P., Laird, N.M., Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 138CrossRefGoogle Scholar
Deusinger, I. (1998). Frankfurter Körperkonzept-Skalen [Frankfurt bodily self-concept scales], Göttingen: HogrefeGoogle Scholar
Grim, J. (1982). On numerical evaluation of maximum-likelihood estimates for finite mixtures of distributions. Kybernetika, 18(3), 173190Google Scholar
Hayduk, L.A. (1987). Structural equation modeling with LISREL. Baltimore, MD: Johns Hopkins University PressGoogle Scholar
Isaacson, E., Keller, H.B. (1966). Analysis of numerical methods. New York, NY: WileyGoogle Scholar
Jaccard, J., Turrisi, R., Wan, C.K. (1990). Interaction effects in multiple regression. Newbury Park, CA: Sage PublicationsGoogle ScholarPubMed
Jöreskog, K.G., Sörbom, D. (1989). LISREL 7: A guide to the program and applications 2nd ed., Chicago, IL: SPSSGoogle Scholar
Jöreskog, K.G., Sörbom, D. (1993). New features in LISREL 8. Chicago, IL: Scientific SoftwareGoogle Scholar
Jöreskog, K. G., Sörbom, D. (1996). PRELIS 2: User's guide. Chicago: Scientific SoftwareGoogle Scholar
Jöreskog, K.G., Yang, F. (1996). Nonlinear structural equation models: The Kenny-Judd model with interaction effects. In Markoulides, G., Schumacker, R. (Eds.), Advanced structural equation modeling (pp. 5787). Mahwah, NJ: Lawrence Erlbaum AssociatesGoogle Scholar
Jöreskog, K. G., Yang, F. (1997). Estimation of interaction models using the augmented moment matrix: Comparison of asymptotic standard errors. In Bandilla, W., Faulbaum, F. (Eds.), SoftStat '97. Advances in statistical software 6 (pp. 467478). Stuttgart: Lucius & LuciusGoogle Scholar
Kenny, D. A., Judd, C. M. (1984). Estimating the nonlinear and interactive effects of latent variables. Psychological Bulletin, 96, 201210CrossRefGoogle Scholar
Klein, A., Moosbrugger, H., Schermelleh-Engel, K., Frank, D. (1997). A new approach to the estimation of latent interaction effects in structural equation models. In Bandilla, W., Faulbaum, F. (Eds.), SoftStat '97. Advances in statistical software 6 (pp. 479486). Stuttgart: Lucius & LuciusGoogle Scholar
Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57, 519530CrossRefGoogle Scholar
Mardia, K. V. (1974). Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies. Sankhya, Series B, 36, 115128Google Scholar
Moosbrugger, H., Frank, D., Schermelleh-Engel, K. (1991). Zur Überprüfung von latenten Moderatoreffekten mit linearen Strukturgleichungsmodellen [Estimating latent interaction effects in structural equation models]. Zeitschrift für Differentielle und Diagnostische Psychologie, 12, 245255Google Scholar
Moosbrugger, H., Schermelleh-Engel, K., Klein, A. (1997). Methodological problems of estimating latent interaction effects. Methods of Psychological Research Online, 2, 95111Google Scholar
Ping, R. A. (1996). Latent variable and quadratic effect estimation: A two-step technique using structural equation analysis. Psychological Bulletin, 119, 166175CrossRefGoogle Scholar
Ping, R. A. (1996). Latent variable regression: A technique for estimating interaction and quadratic coefficients. Multivariate Behavioral Research, 31, 95120CrossRefGoogle ScholarPubMed
Redner, R. A., Walker, H. F. (1984). Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 26, 195239CrossRefGoogle Scholar
Schermelleh-Engel, K., Klein, A., Moosbrugger, H. (1998). Estimating nonlinear effects using a Latent Moderated Structural Equations Approach. In Schumacker, R. E., Marcoulides, G. A. (Eds.), Interaction and nonlinear effects in structural equation modeling (pp. 203238). Mahwah, NJ: Lawrence Erlbaum AssociatesGoogle Scholar
Schmitt, M. (1990). Konsistenz als Persönlichkeitseigenschaft? Moderatorvariablen in der Persönlichkeits- und Einstellungsforschung [Consistency as a personality trait? Moderator variables in personality and attitude research], Berlin: SpringerCrossRefGoogle Scholar
Schwarz, H. R. (1993). Numerische Mathematik [Numerical mathematics], Stuttgart: TeubnerGoogle Scholar
Thiele, A. (1998). Verlust körperlicher Leistungsfähigkeit: Bewältigung des Alterns bei Männern im mittleren Lebensalter [Loss of bodily efficacy: The coping of aging for men of medium age], Idstein, Germany: Schulz-Kirchner-VerlagGoogle Scholar
Yang Jonsson, F. (1997). Nonlinear structural equation models: Simulation studies of the Kenny-Judd model. Uppsala: University of UppsalaGoogle Scholar