Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-07T19:34:57.483Z Has data issue: false hasContentIssue false

Measurement of Subjective Values

Published online by Cambridge University Press:  01 January 2025

Harold Gulliksen*
Affiliation:
Princeton University and Educational Testing Service

Abstract

Four different value laws are developed and tested by using them to predict the scale values of composite stimuli from the scale values of their components. These four laws are: an additive law, a square-root law, a logarithmic, and a negative exponential law. They are tried out on a set of food preferences by means of Pearson's Method of False Position. The negative exponential law of diminishing returns gave the best fit to the data but was not markedly better than any of the other laws.

Type
Original Paper
Copyright
Copyright © 1956 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bishop, Ruth. Points of neutrality in social attitudes of delinquents and non-delinquents. Psychometrika, 1940, 5, 3545CrossRefGoogle Scholar
Cauchy, Augustin Louis. Analyse algébrique, 1821. (Chapter V, Problem I.)Google Scholar
Gulliksen, H.. A rational equation of the learning curve based on Thorndike's law of effect. J. gen. Psychol., 1934, 11, 395434CrossRefGoogle Scholar
Gulliksen, H.. Paired comparisons and the logic of measurement. Psychol. Rev., 1946, 53, 199213CrossRefGoogle ScholarPubMed
Gulliksen, H.. A least squares solution for paired comparisons with incomplete data. Psychometrika, 1956, 21, 125134CrossRefGoogle Scholar
Hamel, Georg. Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung f(x + y) = f(x) + f(y). Mathematische Annalen, 1905, 60, 459462CrossRefGoogle Scholar
Horst, A. P.. A method for determining the absolute value of a series of stimulus situations. J. educ. Psychol., 1932, 23, 418440CrossRefGoogle Scholar
Mitscherlich, E. A.. Das Gesetz des Minimums und das Gesetz des abnehmenden Bodenertrages. Landwirtschaftl. Jarhb. Zsch. f. wiss. Landwirtschft, 1909, 38, 537552Google Scholar
Osgood, W. F.. Advanced calculus, New York: MacMillan, 1940Google Scholar
Pearson, Karl. On a general theory of the method of false position. Phil. Mag., 1903, 4, 658668CrossRefGoogle Scholar
Sierpiński, Waclaw. Sur l'équation fonctionelle f(x + y) = f(x) + f(y). Fundamenta Mathematicae, 1920, 1, 116122CrossRefGoogle Scholar
Spillman, W. J., Lang, E.. The law of diminishing returns, Yonkers, N. Y.: World Book Co., 1924Google Scholar
Thurstone, L. L.. The indifference function. J. soc. Psychol., 1931, 2, 139167CrossRefGoogle Scholar
Thurstone, L. L.. Measurement of values. Psychol. Rev., 1954, 61, 4758CrossRefGoogle ScholarPubMed
Thurstone, L. L. and Jones, L. V. The rational origin for measuring subjective values. (Unpublished manuscript.)Google Scholar
Thurnbull, H. W., Aitken, A. C.. An introduction to the theory of canonical matrices, London and Glasgow: Blackie and Son, Limited, 1950Google Scholar
Willers, F. A.. Practical analysis graphical and numerical methods, New York: Dover Publ. Inc., 1948Google Scholar