Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-07T18:35:01.606Z Has data issue: false hasContentIssue false

Suppressing Permutations or Rigid Planar Rotations: A Remedy Against Nonoptimal Varimax Rotations

Published online by Cambridge University Press:  01 January 2025

Jos M. F. ten Berge*
Affiliation:
University of Groningen
*
Requests for reprints should be sent to Jos M. F. ten Berge, Department of Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS Groningen, THE NETHERLANDS.

Abstract

Varimax rotation consists of iteratively rotating pairs of columns of a matrix to a maximal sum (over columns) of variances of squared elements of the matrix. Without loss of optimality, the two rotated columns can be permuted and/or reflected. Although permutations and reflections are harmless for each planar rotation per se, they can be harmful in Varimax rotation. Specifically, they often give rise to the phenomenon that certain pairs of columns are consistently skipped in the iterative process, whence Varimax will be terminated at a nonstationary point. The skipping phenomenon is demonstrated, and it is shown how to prevent it.

Type
Original Paper
Copyright
Copyright © 1995 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author is obliged to Henk Kiers for commenting on a previous draft.

References

Clarkson, D. B., Jennrich, R. I. (1988). Quartic rotation criteria. Psychometrika, 53, 251259.CrossRefGoogle Scholar
Crawford, C. B., Ferguson, G. A. (1970). A general rotation criterion and its use in orthogonal rotation. Psychometrika, 35, 321332.CrossRefGoogle Scholar
de Leeuw, J., Pruzansky, S. (1978). A new computational method to fit the weighted Euclidean distance model. Psychometrika, 43, 479490.CrossRefGoogle Scholar
Fraenkel, E. (1984). Variants of the Varimax rotation method. Biometrical Journal, 26, 741748.CrossRefGoogle Scholar
Gebhardt, F. (1968). A counterexample to two-dimensional Varimax rotation. Psychometrika, 33, 3536.CrossRefGoogle ScholarPubMed
Gorsuch, R. L. (1983). Factor analysis 2nd ed.,, Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Harman, H. H. (1967). Modern factor analysis, Chicago: The University of Chicago Press.Google Scholar
Harris, C. W., Kaiser, H. F. (1964). Oblique factor analytic solutions by orthogonal transformations. Psychometrika, 29, 347362.CrossRefGoogle Scholar
Jacobi, C. G. J. (1846). Über ein leichtes Verfahren, die in der Theorie der Säkularstörungen vorkommenden Gleichungen numerisch aufzulösen. [About an easy procedure to solve the equations that arise in the theory of secular variation by numerical means]. Journal für die reine und angewandte Mathematik, 30, 5195.Google Scholar
Jennrich, R. I. (1970). Orthogonal rotation algorithms. Psychometrika, 35, 229235.CrossRefGoogle Scholar
Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187200.CrossRefGoogle Scholar
Kaiser, H. F. (1959). Computer program for Varimax rotation in factor analysis. Educational and Psychological Measurement, 19, 413420.CrossRefGoogle Scholar
Kiers, H. A. L. (1994). Orthomax rotation of two- and threeway arrays. Unpublished manuscript, University of Groningen, Department of Psychology.Google Scholar
Kiers, H. A. L., ten Berge, J. M. F. (1994). The Harris-Kaiser independent cluster rotation as a method for rotation to simple component weights. Psychometrika, 59, 8190.CrossRefGoogle Scholar
Nevels, K. (1986). A direct solution for pairwise rotations in Kaiser's Varimax method. Psychometrika, 51, 327329.CrossRefGoogle Scholar
Schönemann, P. H. (1966). Varisim: A new machine method for orthogonal rotation. Psychometrika, 31, 235248.CrossRefGoogle ScholarPubMed
Sherin, R. J. (1966). A matrix formulation of Kaiser's varimax criterion. Psychometrika, 31, 535538.CrossRefGoogle ScholarPubMed
ten Berge, J. M. F. (1984). A joint treatment of Varimax rotation and the problem of diagonalizing symmetric matrices simultaneously in the least squares sense. Psychometrika, 49, 347358.CrossRefGoogle Scholar
ten Berge, J. M. F., Knol, D. L., Kiers, H. A. L. (1988). A treatment of the Orthomax rotation family in terms of diagonalization, and a re-examination of a singular value approach to Varimax rotation. Computational Statistics Quarterly, 3, 207217.Google Scholar