Hostname: page-component-5f745c7db-tvc9f Total loading time: 0 Render date: 2025-01-06T06:27:36.309Z Has data issue: true hasContentIssue false

Concerning Monte Carlo Evaluations of Nonmetric Multidimensional Scaling Algorithms

Published online by Cambridge University Press:  01 January 2025

Phipps Arabie*
Affiliation:
Stanford University

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Original Paper
Copyright
Copyright © 1973 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arabie, P. and Boorman, S. A. Multidimensional scaling of measures of distance between partitions. Journal of Mathematical Psychology, 1973, 10, 148203CrossRefGoogle Scholar
Klahr, D. A Monte Carlo investigation of the statistical significance of Kruskal's nonmetric scaling procedure. Psychometrika, 1969, 34, 319330CrossRefGoogle Scholar
Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 1964, 29, 128CrossRefGoogle Scholar
Kruskal, J. B. Nonmetric multidimensional scaling: A numerical method. Psychometrika, 1964, 29, 115129CrossRefGoogle Scholar
Kruskal, J. B. and Carmone, F. How to use M-D-SCAL (Version 5M) and other useful information, 1970, Cambridge: Marketing Science InstituteGoogle Scholar
Kruskal, J. B. and Carroll, J. D. Geometrical models and badness-of-fit functions. In Krishnaiah, P. R. (Eds.), Multivariate analysis II, 1969, New York: Academic PressGoogle Scholar
Lingoes, J. C., & Roskam, E. E. A mathematical and empirical study of two multidimensional scaling algorithms. Michigan Mathematical Psychology Report 71-1. Ann Arbor: 1971.Google Scholar
Roskam, E. E. A comparison of principles of algorithm construction in nonmetric scaling. Michigan Mathematical Psychology Program Report 69-2. Ann Arbor: 1969.Google Scholar
Spaeth, H. J. and Guthery, S. B. The use and utility of the monotone criterion in multidimensional scaling. Multivariate Behavioral Research, 1969, 4, 501515CrossRefGoogle ScholarPubMed
Spence, I. A Monte Carlo evaluation of three nonmetric scaling algorithms. Psychometrika, 1972, 37(4), 461486CrossRefGoogle Scholar
Stenson, H. H. and Knoll, R. L. Goodness of fit for random rankings in Kruskal's nonmetric scaling procedure. Psychological Bulletin, 1969, 71, 122126CrossRefGoogle Scholar
Young, F. W. A FORTRAN IV program for nonmetric multidimensional scaling. L. L. Thurstone Psychometric Laboratory Report No. 56. Chapel Hill: 1968.Google Scholar
Young, F. W., & Applebaum, M. I. Nonmetric multidimensional scaling: The relationship of several methods. L. L. Thurstone Psychometric Laboratory Report No. 71. Chapel Hill: 1968.CrossRefGoogle Scholar
Whitley, V. M. Problems in multidimensional scaling, 1971, Irvine: University of CaliforniaGoogle Scholar