Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-08T16:06:38.675Z Has data issue: false hasContentIssue false

Estimation of the Correlation Coefficient in Contingency Tables with Possibly Nonmetrical Characters

Published online by Cambridge University Press:  01 January 2025

H. O. Lancaster
Affiliation:
University of Sydney
M. A. Hamdan
Affiliation:
University of Sydney

Abstract

A method of estimating the product moment correlation from the polychoric series is developed. This method is shown to be a generalization of the method which uses the tetrachoric series to obtain the tetrachoric correlation. Although this new method involves more computational labor, it is shown to be superior to older methods for data grouped into a small number of classes.

Type
Original Paper
Copyright
Copyright © 1964 Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernstein, S. Sur l'extension du théorème limite du calcul des probabilités aux sommes de quantités dépendantes. Math. Annalen, 1926, 97, 159.CrossRefGoogle Scholar
Irwin, J. O. On the distribution of a weighted estimate of variance and on analysis of variance in certain cases of unequal weighting. J. roy. statist. Soc., 1942, 105, 115118.CrossRefGoogle Scholar
Lancaster, H. O. The derivation and partition ofx 2 in certain discrete distributions. Biometrika, 1949, 36, 117129.Google Scholar
Lancaster, H. O. The structure of bivariate distributions. Ann. math. Statist., 1958, 29, 719736.CrossRefGoogle Scholar
Mehler, F. G. Uber die Entwicklung einer Funktion von beliebig vielen Variablen nach Laplaceschen Funktionen höherer Ordnung. J. f. Mathematik, 1866, 66, 161176.Google Scholar
Pearson, K. On a criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Phil. Mag., 1900, 50, 157175.CrossRefGoogle Scholar
Pearson, K. Mathematical contribution to the theory of evolution VII: On the correlation of characters not quantitatively measurable. Philos. Trans. roy. Soc. London, 1900, 195A, 147.Google Scholar
Pearson, K. Mathematical contribution to the theory of evolution XIII: On the theory of contingency and its relation to association and normal correlation. Drapers Company Research Memoirs, Biometric Series No. 1, 1904.Google Scholar
Pearson, K. On the measurement of the influence of “broad categories” on correlation. Biometrika, 1913, 9, 116139.CrossRefGoogle Scholar
Pearson, K. and Heron, D. On theories of association. Biometrika, 1913, 9, 159315.CrossRefGoogle Scholar
Pearson, K. and Lee, A. On the laws of inheritance in man. Biometrika, 1903, 2, 357462.CrossRefGoogle Scholar
Pearson, K. and Pearson, E. S. On polychoric coefficients of correlation. Biometrika, 1922, 14, 127156.CrossRefGoogle Scholar
Ritchie-Scott, A. The correlation coefficient of a polychoric table. Biometrika, 1918, 12, 93133.CrossRefGoogle Scholar
Szegö, G. Orthogonal polynomials. Colloquium Publ. No. 23, Amer. Math. Soc., 1959.Google Scholar
Tschuprow, A. A. Grundbegriffe und Grundproblem der Korrelationtheorie, Leipzig: Teubner, 1925.Google Scholar