Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-07T17:03:35.208Z Has data issue: false hasContentIssue false

Generalized Multilevel Structural Equation Modeling

Published online by Cambridge University Press:  01 January 2025

Sophia Rabe-Hesketh*
Affiliation:
University of California, Berkeley
Anders Skrondal
Affiliation:
Norwegian Institute of Public Health, Oslo
Andrew Pickles
Affiliation:
The University of Manchester
*
Requests for reprints should be sent to Sophia Rabe-Hesketh, Graduate School of Education, 3659 Tolman Hall, University of California, Berkeley, California 94720-1670, USA. E-Mail: sophiarh@berkeley.edu

Abstract

A unifying framework for generalized multilevel structural equation modeling is introduced. The models in the framework, called generalized linear latent and mixed models (GLLAMM), combine features of generalized linear mixed models (GLMM) and structural equation models (SEM) and consist of a response model and a structural model for the latent variables. The response model generalizes GLMMs to incorporate factor structures in addition to random intercepts and coefficients. As in GLMMs, the data can have an arbitrary number of levels and can be highly unbalanced with different numbers of lower-level units in the higher-level units and missing data. A wide range of response processes can be modeled including ordered and unordered categorical responses, counts, and responses of mixed types. The structural model is similar to the structural part of a SEM except that it may include latent and observed variables varying at different levels. For example, unit-level latent variables (factors or random coefficients) can be regressed on cluster-level latent variables. Special cases of this framework are explored and data from the British Social Attitudes Survey are used for illustration. Maximum likelihood estimation and empirical Bayes latent score prediction within the GLLAMM framework can be performed using adaptive quadrature in gllamm, a freely available program running in Stata.

Type
Theory And Methods
Copyright
Copyright © 2004 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

gllamm can be downloaded from http://www.gllamm.org. The paper was written while Sophia Rabe-Hesketh was employed at and Anders Skrondal was visiting the Department of Biostatistics and Computing, Institute of Psychiatry, King's College London.

References

Ansari, A., & Jedidi, K. (2000). Bayesian factor analysis for multilevel binary observations. Psychometrika, 65, 475496CrossRefGoogle Scholar
Arminger, G., & Sobel, M. (1990). Pseudo maximum likelihood estimation of mean- and covariance structures with missing data. Journal of the American Statistical Association, 85, 195203CrossRefGoogle Scholar
Asparouhov, T., & Muthén, B.O. (2004). Full-information maximum-likelihood estimation of general two-level latent variable models. Draft.Google Scholar
Bollen, K.A. (1989). Structural Equations with Latent Variables. New York: WileyCrossRefGoogle Scholar
Böckenholt, U. (2001). Hierarchical modeling of paired comparison data. Psychological Methods, 6, 4966CrossRefGoogle ScholarPubMed
Carroll, R.J., Ruppert, D., & Stefanski, L.A. (1995). Measurement Error in Nonlinear Models. London: Chapman & HallCrossRefGoogle Scholar
Chou, C.-P., Bentler, P.M., & Pentz, M.A. (2000). A two-stage approach to multilevel structural equation models: application to longitudinal data. In Little, T.D., Schnabel, K.U., & Baumert, J. (Eds.), Modeling Longitudinal and Multilevel Data (pp. 3349). Mahwah, NJ: ErlbaumGoogle Scholar
Clayton, D. (1988). The analysis of event history data: a review of progress and outstanding problems. Statistics in Medicine, 7, 819841CrossRefGoogle Scholar
Clogg, C. C. (1995). Latent class models. In Arminger, G., Clogg, C.C., & Sobel, M.E. (Eds.), Handbook of Statistical Modeling for the Social and Behavioral Sciences (pp. 311359). New York: Plenum PressCrossRefGoogle Scholar
Dohoo, I.R., Tillard, E., Stryhn, H., & Faye, B. (2001). The use of multilevel models to evaluate sources of variation in reproductive performance in dairy cattle. Preventive Veterinary Medicine, 50, 127144CrossRefGoogle ScholarPubMed
Fox, J.P. (2001). Multilevel IRT: A Bayesian Perspective on Estimating Parameters and Testing Statistical Hypotheses. Enschede: University of TwenteGoogle Scholar
Fox, J.P., &Glas, C. A.W. (2001). Bayesian estimation of a multilevel IRT model using Gibbs sampling. Psychometrika, 66, 271288CrossRefGoogle Scholar
Fox, J.P., & Glas, C. A.W. (2003). Bayesian modeling of measurement error in predictor variables using item response theory. Psychometrika, 68, 169191CrossRefGoogle Scholar
Goldstein, H. (1986). Multilevel mixed linear model analysis using iterative generalised least squares. Biometrika, 73, 4356CrossRefGoogle Scholar
Goldstein, H. (1995). Multilevel Statistical Models. London: ArnoldGoogle Scholar
Goldstein, H., & Browne, W. (2002). Multilevel factor analysis modeling using Markov Chain Monte Carlo (MCMC) estimation. In Marcoulides, G.A. & Moustaki, I. (Eds.), Latent Variable and Latent Structure Models. Mahwah, NJ: ErlbaumGoogle Scholar
Goldstein, H., & McDonald, R.P. (1988). A general model for the analysis of multilevel data. Psychometrika, 53, 455467CrossRefGoogle Scholar
Hagenaars, J.A. (1988). Latent structure models with direct effects between indicators: local dependence models. Sociological Methods & Research, 16, 379405CrossRefGoogle Scholar
Harper, D. (1972). Local dependence latent structure models. Psychometrika, 37, 5359CrossRefGoogle Scholar
Heckman, J.J. (1979). Sample selection bias as a specification error. Econometrica, 47, 153161CrossRefGoogle Scholar
Heckman, J.J., & Singer, B. (1984). A method of minimizing the impact of distributional assumptions in econometric models for duration data. Econometrica, 52, 271320CrossRefGoogle Scholar
Hox, J. (2002). Multilevel Analysis: Techniques and Applications. Mahwah, NJ: ErlbaumCrossRefGoogle Scholar
Jöreskog, K.G. (1971). Simultaneous factor analysis in several populations. Psychometrika, 36, 409426CrossRefGoogle Scholar
Jöreskog, K.G. (1973). A general method for estimating a linear structural equation system. In Goldberger, A.S. & Duncan, O.D. (Eds.), Structural Equation Models in the Social Sciences (pp. 85112). New York: SeminarGoogle Scholar
Jöreskog, K.G. & Goldberger, A.S. (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable. Journal of the American Statistical Association, 70, 631639Google Scholar
Jöreskog, K.G., & Sörbom, D. (1989). LISREL 7: A Guide to the Program and Applications. Chicago, IL: SPSS PublicationsGoogle Scholar
Knott, M., Albanese, M.T., & Galbraith, J.I. (1990). Scoring attitudes to abortion. The Statistician, 40, 217223CrossRefGoogle Scholar
Laird, N.M. (1978). Nonparametric maximum likelihood estimation of a mixing distribution. Journal of the American Statistical Association, 73, 805811CrossRefGoogle Scholar
Lee, S.-Y., & Shi, J.-Q. (2001). Maximum likelihood estimation of two-level latent variable models with mixed continuous and polytomous data. Biometrics, 57, 787794CrossRefGoogle ScholarPubMed
Lee, S.-Y., & Tsang, S.-Y. (1999). Constrained maximum likelihood estimation of two-level covariance structure models via EM type algorithms. Psychometrika, 64, 435450CrossRefGoogle Scholar
Lesaffre, E., & Spiessens, B. (2001). On the effect of the number of quadrature points in a logistic random-effects model: an example. Applied Statistics, 50, 325335Google Scholar
Liang, J., & Bentler, P. M. (2003). An EM algorithm for fitting two-level structural equation models. Psychometrika, in press.Google Scholar
Linda, N.Y., Lee, S.-Y., & Poon, W.-Y. (1993). Covariance structure analysis with three level data. Computational Statistics & Data Analysis, 15, 159178Google Scholar
Longford, N.T. (1993). Random Coefficient Models. Oxford: Oxford University PressGoogle Scholar
Longford, N.T., & Muthén, B.O. (1992). Factor analysis for clustered observations. Psychometrika, 57, 581597CrossRefGoogle Scholar
McArdle, J.J. (1986). Latent variable growth within behavior genetic models. Behavior Genetics, 16, 163200CrossRefGoogle ScholarPubMed
McDonald, R.P., & Goldstein, H. (1989). Balanced and unbalanced designs for linear structural relations in two-level data. British Journal of Mathematical and Statistical Psychology, 42, 215232CrossRefGoogle Scholar
Meredith, W. & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107122CrossRefGoogle Scholar
Muthén, B.O. (1984). A general structural equation model with dichotomous, ordered categorical and continuous latent indicators. Psychometrika, 49, 115132CrossRefGoogle Scholar
Muthén, B.O. (1985). A method for studying the homogeneity of test items with respect to other relevant variables. Journal of Educational Statistics, 10, 121132CrossRefGoogle Scholar
Muthén, B.O. (1989). Latent variable modeling in heterogeneous populations. Psychometrika, 54, 557585CrossRefGoogle Scholar
Muthén, B.O. (1994). Multilevel covariance structure analysis. Sociological Methods & Research, 22, 376398CrossRefGoogle Scholar
Muthén, B.O. (1997). Latent variable modeling of longitudinal and multilevel data. In Raftery, A.E. (Eds.), Sociological Methodology 1997 (pp. 453480). Cambridge, MA: BlackwellGoogle Scholar
Muthén, B.O. (2002). Beyond SEM: General latent variable modeling. Behaviormetrika, 29, 81117CrossRefGoogle Scholar
Muthén, L.K., & Muthén, B.O. (1998). Mplus User's Guide. Los Angeles, CA: Muthén & MuthénGoogle Scholar
Neale, M.C., & Cardon, L.R. (1992). Methodology for Genetic Studies of Twins and Families. London: KluwerCrossRefGoogle Scholar
Pickles, A., Pickering, K., Simonoff, E., Meyer, J., Silberg, J., & Maes, H. (1998). Genetic clocks and soft events: A twin model for pubertal development and other recalled sequences of developmental milestones. Behavior Genetics, 28, 243253CrossRefGoogle ScholarPubMed
Plummer, M., & Clayton, D. (1993). Measurement error in dietary assessment: an investigation using covariance structure models. Part II. Statistics in Medicine, 12, 937948CrossRefGoogle ScholarPubMed
Poon, W.-Y., & Lee, S.-Y. (1992). Maximum likelihood and generalized least squares analyses of two-level structural equation models. Statistics and Probability Letters, 14, 2530CrossRefGoogle Scholar
Rabe-Hesketh, S., & Pickles, A. (1999). Generalised linear latent and mixed models. In Friedl, H., Berghold, A. & Kauermann, G. (Eds.), Proceedings of the 14th International Workshop on Statistical Modeling (pp. 332339). Graz, Austria.Google Scholar
Rabe-Hesketh, S., Pickles, A., &Skrondal, A. (2001). GLLAMM: A general class of multilevel models and a Stata program. Multilevel Modelling Newsletter, 13, 1723Google Scholar
Rabe-Hesketh, S., Pickles, A., & Skrondal, A. (2001b). GLLAMM Manual. Tech. rept. 2001/01. Department of Biostatistics and Computing, Institute of Psychiatry, King's College, University of London. Downloadable from http://www.gllamm.org.Google Scholar
Rabe-Hesketh, S., Pickles, A., & Skrondal, A. (2003). Correcting for covariate measurement error in logistic regression using nonparametric maximum likelihood estimation. Statistical Modelling, 3, 215232CrossRefGoogle Scholar
Rabe-Hesketh, S., Pickles, A., & Taylor, C. (2000). sg129: Generalized linear latent and mixed models. Stata Technical Bulletin, 53, 4757Google Scholar
Rabe-Hesketh, S., & Skrondal, A. (2001). Parameterization of multivariate random effects models for categorical data. Biometrics, 57, 12561264CrossRefGoogle ScholarPubMed
Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2002). Reliable estimation of generalized linear mixed models using adaptive quadrature. The Stata Journal, 2, 121CrossRefGoogle Scholar
Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2003). Maximum likelihood estimation of generalized linear models with covariate measurement error. The Stata Journal, 3, 386411CrossRefGoogle Scholar
Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2004). Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. Journal of Econometrics, in press.Google Scholar
Rabe-Hesketh, S., Toulopoulou, T., & Murray, R. (2001). Multilevel modeling of cognitive function in schizophrenic patients and their first degree relatives. Multivariate Behavioral Research, 36, 279298CrossRefGoogle ScholarPubMed
Rabe-Hesketh, S., Yang, S., & Pickles, A. (2001). Multilevel models for censored and latent responses. Statistical Methods in Medical Research, 10, 409427CrossRefGoogle ScholarPubMed
Rasbash, J., Browne, W., Goldstein, H., Yang, M., Plewis, I., Healy, M., Woodhouse, G., Draper, D., Langford, I., & Lewis, T. (2000). A User's Guide to MLwiN second edition, London: Institute of Education, University of LondonGoogle Scholar
Raudenbush, S.W. (1995). Maximum likelihood estimation for unbalanced multilevel covariance structure models via the EM algorithm. British Journal of Mathematical and Statistical Psychology, 48, 359370CrossRefGoogle Scholar
Raudenbush, S.W., Bryk, A.S., Cheong, Y.F., & Congdon, R. (2000). HLM 5: Hierarchical Linear and Nonlinear Modeling. Lincolnwood, IL: Scientific Software InternationalGoogle Scholar
Raudenbush, S.W., & Bryk, A.S. (2002). Hierarchical Linear Models: Applications and Data Analysis Methods. Thousand Oaks, CA: SageGoogle Scholar
Raudenbush, S.W., & Sampson, R. (1999a). Assessing direct and indirect effects in multilevel designs with latent variables. Sociological Methods & Research, 28, 123153CrossRefGoogle Scholar
Raudenbush, S.W., & Sampson, R. (1999b). Ecometrics: toward a science of assessing ecological settings, with application to the systematic social observation of neighborhoods. In Marsden, P.V. (Eds.), Sociological Methodology 1999, vol. 29 (pp. 141). Oxford: BlackwellGoogle Scholar
Rijmen, F., Tuerlinckx, F., De Boeck, P., & Kuppens, P. (2003). A nonlinear mixed model framework for IRT models. Psychological Methods, 8, 185205CrossRefGoogle Scholar
Rindskopf, D. (1984). Using phantom and imaginary latent variables to parameterize constraints in linear structural models. Psychometrika, 49, 3747CrossRefGoogle Scholar
Skrondal, A., & Laake, P. (2001). Regression among factor scores. Psychometrika, 66, 563576CrossRefGoogle Scholar
Skrondal, A., & Rabe-Hesketh, S. (2003). Multilevel logistic regression for polytomous data and rankings. Psychometrika, 68, 267287CrossRefGoogle Scholar
Skrondal, A., & Rabe-Hesketh, S. (2003). Some applications of generalized linear latent and mixed models in epidemiology: Repeated measures, measurement error and multilevel modeling. Norwegian Journal of Epidemiology, 13, 265278Google Scholar
Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: Multilevel, longitudinal and structural equation models. Boca Raton, FL: Chapman & Hall/CRCCrossRefGoogle Scholar
Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized linear latent and mixed models with composite links and exploded likelihoods. In Biggeri, A., Dreassi, E., Lagazio, C. & Marchi, M. (Eds.), Proceedings of the 19th International Workshop on Statistical Modeling (pp. 2739). Florence, Italy: Firenze University PressGoogle Scholar
Skrondal, A., Rabe-Hesketh, S., & Pickles, A. (2002). Informative dropout and measurement error in cluster randomised trials. Paper presented at the International Biometric Society Conference 2002, Freiburg.Google Scholar
Social and Community Planning Research (1987). British Social Attitudes Panel Survey, 1983–1986 [Computer file] SN: 2197. Colchester, Essex: The Data ArchiveGoogle Scholar
Spiegelhalter, D., Thomas, A., Best, N., & Gilks, W. (1996). BUGS 0.5 Bayesian Analysis using Gibbs sampling. Manual (version ii). Cambridge: MRC-Biostatistics UnitGoogle Scholar
StataCorp. (2003). Stata Statistical Software: Release 8.0. College Station, TX: Stata CorporationGoogle Scholar
Takane, Y. (1987). Analysis of covariance structures and probabilistic binary data. Communication & Cognition, 20, 4562Google Scholar
Wiggins, R.D., Ashworth, K., O'Muircheartaigh, C.A., & Galbraith, J.I. (1990). Multilevel analysis of attitudes to aboration. The Statistician, 40, 225234CrossRefGoogle Scholar
Yang, S., & Pickles, A. (2004). Multilevel latent models for multivariate responses subject to measurement error. Submitted for publication.Google Scholar
Yang, S., Pickles, A., & Taylor, C. (1999). Multilevel latent variable model for analysing two-phase survey data. In Friedl, H., Berghold, A., & Kauermann, G. (Eds.) Proceedings of the 14th International Workshop on Statistical Modeling (pp. 402408). Graz, Austria.Google Scholar