Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-08T14:40:24.112Z Has data issue: false hasContentIssue false

J.C. Gower and G.B. Dijksterhuis. Procrustes problems. New York: Oxford University Press, 2004, xiv + 233 pp., $102.69.

Review products

J.C. Gower and G.B. Dijksterhuis. Procrustes problems. New York: Oxford University Press, 2004, xiv + 233 pp., $102.69.

Published online by Cambridge University Press:  01 January 2025

Jos M. F. Ten Berge*
Affiliation:
University Of Groningen

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Book Review
Copyright
Copyright © 2005 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Browne, M.W. (1967). On oblique Procrustes rotation. Psychometrika, 32, 125132.CrossRefGoogle ScholarPubMed
Gower, J.C. (1976). Procrustes rotation problems. The Mathematical Scientist, I, (Supplement), 1215.Google Scholar
Kiers, H.A.L., Groenen, P.J.F. (1996). A monotonically convergent algorithm for orthogonal congruence rotation. Psychometrika, 61, 375389.CrossRefGoogle Scholar
Korth, B., Tucker, L.R. (1976). Procrustes matching by congruence coefficients. Psychometrika, 41, 531535.CrossRefGoogle Scholar
Kristof, W. (1970). A theorem on the trace of certain matrix products and some applications. J. Mathematical Psychology, 7, 515530.CrossRefGoogle Scholar
Magnus, J.R., Neudecker, H. (1999). Matrix differential calculus with applications in statistics and econometrics. New York: Wiley.Google Scholar
Mosier, C.I. (1939). Determining a simple structure when loadings for certain tests are known. Psychometrika, 4, 149162.CrossRefGoogle Scholar
Ten Berge, J.M.F. (1983). A generalization of Kristof's theorem on the trace of certain matrix products. Psychometrika, 48, 519523.CrossRefGoogle Scholar
Ten Berge, J.M.F. (1993). Least squares optimization in multivariate analysis. Leiden: DSWO. Downloadable in pdf from: http://www.rug.nl/psy/onderzoek/onderzoeksprogrammas/ps.Google Scholar
Ten Berge, J.M.F. (in press). The rigid orthogonal Procrustes rotation problem. Psychometrika, DOI: 10.1007/s11336-003-1160-2.Google Scholar
Ten Berge, J.M.F., Knol, D.L. (1984). Orthogonal rotations to maximal agreement for two or more matrices of different column orders. Psychometrika, 49, 4955.CrossRefGoogle Scholar