Hostname: page-component-5f745c7db-j9pcf Total loading time: 0 Render date: 2025-01-06T07:36:08.406Z Has data issue: true hasContentIssue false

Modeling Intensive Polytomous Time-Series Eye-Tracking Data: A Dynamic Tree-Based Item Response Model

Published online by Cambridge University Press:  01 January 2025

Sun-Joo Cho*
Affiliation:
Vanderbilt University
Sarah Brown-Schmidt
Affiliation:
Vanderbilt University
Paul De Boeck
Affiliation:
The Ohio State University KU Leuven
Jianhong Shen
Affiliation:
Vanderbilt University
*
Correspondence should be made to Sun-Joo Cho, Vanderbilt University, Nashville, USA. Email: sj.cho@vanderbilt.edu; http://www.vanderbilt.edu/psychological_sciences/bio/sun-joo-cho

Abstract

This paper presents a dynamic tree-based item response (IRTree) model as a novel extension of the autoregressive generalized linear mixed effect model (dynamic GLMM). We illustrate the unique utility of the dynamic IRTree model in its capability of modeling differentiated processes indicated by intensive polytomous time-series eye-tracking data. The dynamic IRTree was inspired by but is distinct from the dynamic GLMM which was previously presented by Cho, Brown-Schmidt, and Lee (Psychometrika 83(3):751–771, 2018). Unlike the dynamic IRTree, the dynamic GLMM is suitable for modeling intensive binary time-series eye-tracking data to identify visual attention to a single interest area over all other possible fixation locations. The dynamic IRTree model is a general modeling framework which can be used to model change processes (trend and autocorrelation) and which allows for decomposing data into various sources of heterogeneity. The dynamic IRTree model was illustrated using an experimental study that employed the visual-world eye-tracking technique. The results of a simulation study showed that parameter recovery of the model was satisfactory and that ignoring trend and autoregressive effects resulted in biased estimates of experimental condition effects in the same conditions found in the empirical study.

Type
Application Reviews and Case Studies (ARCS)
Copyright
Copyright © 2020 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11336-020-09694-6) contains supplementary material, which is available to authorized users.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

Allopenna, P.D., Magnuson, J.S., & Tanenhaus, M.K., (1998). Tracking the time course of spoken word recognition using eye movements: Evidence for continuous mapping models. Journal of Memory and Language, 38 419439https://doi.org/10.1006/jmla.1997.2558.CrossRefGoogle Scholar
Altmann, G.T., & Kamide, Y.(1999). Incremental interpretation at verbs: Restricting the domain of subsequent reference. Cognition, 73, 247264. https://doi.org/10.1016/S0010-0277(99)00059-1.CrossRefGoogle ScholarPubMed
Baayen, R.H., Davidson, D.J., & Bates, D.M., (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390412. https://doi.org/10.1016/j.jml.2007.12.005.CrossRefGoogle Scholar
Barr, D.J., (2008a). Analyzing ’visual world’ eyetracking data using multilevel logistic regression. Journal of Memory and Language, 59, 457474. https://doi.org/10.1016/j.jml.2007.09.002.CrossRefGoogle Scholar
Barr, D.J., (2008b). Pragmatic expectations and linguistic evidence: Listeners anticipate but do not integrate common ground. Cognition, 109, 1840. https://doi.org/10.1016/j.cognition.2008.07.005.CrossRefGoogle Scholar
Barr, D.J., Levy, R.Scheepers, C. & Tily, H.J., (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255278. https://doi.org/10.1016/j.jml.2012.11.001.CrossRefGoogle ScholarPubMed
Barrett, H.C., Broesch, T.Scott, R.M., He, Z.Baillargeon, R. & Wu, D.(2013). Early false-belief understanding in traditional non-western societies. Proceedings of the Royal Society of London B: Biological Sciences, 280, 20122654. https://doi.org/10.1098/rspb.2012.2654.Google ScholarPubMed
Bartolucci, F. & Nigro, V.(2010). A dynamic model for binary panel data with unobserved heterogeneity admitting a n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-consistent conditional estimator. Econometrica, 78, 719733. https://doi.org/10.3982/ecta7531.Google Scholar
Batchelder, W.H., & Crowther, C.S., (1997). Multinomial processing tree models of factorial categorization. Journal of Mathematical Psychology, 41, 4555. https://doi.org/10.1006/jmps.1997.1146.CrossRefGoogle Scholar
Batchelder, W.H., & Riefer, D.M., (1999). Theoretical and empirical review of multinomial process tree modeling. Psychonomic Bulletin & Review, 6, 5786. https://doi.org/10.3758/bf03210812.CrossRefGoogle ScholarPubMed
Bates, D., Mächler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H., etal. (2018).Package “lme4”: Linear mixed-effects models using ‘eigen’ and s4. Retrieved March 10, 2018 from https://cran.r-project.org/web/packages/lme4/lme4.pdf.Google Scholar
Böckenholt, U.(2012). Modeling multiple response processes in judgment and choice. Psychological Methods, 17 4665678. https://doi.org/10.1037/a0028111.CrossRefGoogle ScholarPubMed
Böckenholt, U.(2017). Measuring response styles in Likert items. Psychological Methods, 22, 6983. https://doi.org/10.1037/met0000106.CrossRefGoogle ScholarPubMed
Bringmann, L.F., Hamaker, E.L., Vigo, D.E., Aubert, A.Borsboom, D. & Tuerlinckx, F., (2017). Changing dynamics: Time-varying autoregressive models using generalized additive modeling. Psychological Methods, 22, 409425. https://doi.org/10.1037/met0000085.CrossRefGoogle ScholarPubMed
Brown-Schmidt, S.(2009a). The role of executive function in perspective-taking during on-line language comprehension. Psychonomic Bulletin & Review, 16, 893900. https://doi.org/10.3758/pbr.16.5.893.CrossRefGoogle Scholar
Brown-Schmidt, S.(2009b). Partner-specific interpretation of maintained referential precedents during interactive dialog. Journal of Memory and Language, 61, 171190. https://doi.org/10.1016/j.jml.2009.04.003.CrossRefGoogle ScholarPubMed
Brown-Schmidt, S.(2012). Beyond common and privileged: Gradient representations of common ground in real-time language use. Language and Cognitive Processes, 27, 6289. https://doi.org/10.1080/01690965.2010.543363.CrossRefGoogle Scholar
Brown-Schmidt, S.Gunlogson, C. & Tanenhaus, M.K., (2008). Addressees distinguish shared from private information when interpreting questions during interactive conversation. Cognition, 107, 11221134. https://doi.org/10.1016/j.cognition.2007.11.005.CrossRefGoogle ScholarPubMed
Browne, M.W., & Nesselroade, J.R., Maydeu-Olivares, A.McArdle, J.J., (2005). Representing psychological processes with dynamic factor models: Some promising uses and extensions of autoregressive moving average time series models. Multivariate applications book series. Contemporary psychometrics: A festschrift for Roderick P. McDonald, Mahwah, NJ:Lawrence Erlbaum Associates Publishers 415452Google Scholar
Burnham, K.P., & Anderson, D.R., Model selection and multimodel inference: A practical information-theoretical approach 2004 2New York, NY:Springer. https://doi.org/10.1007/b97636.CrossRefGoogle Scholar
Carpenter, B.Gelman, A.Hoffman, M.Lee, D.Goodrich, B.Betancourt, M.Riddell, A.(2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76, 132. https://doi.org/10.18637/jss.v076.i01.CrossRefGoogle Scholar
Chatfield, C.The analysis of time series: An introduction 2004 6London:Chapman Hall. https://doi.org/10.1007/978-1-4899-2921-1.Google Scholar
Cho, S-JDe Boeck, P.(2018). A note on N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} in Bayesian information criterion for item response models. Applied Psychological Measurement, 42, 169172. https://doi.org/10.1177/0146621617726791.CrossRefGoogle Scholar
Cho, S.-J., Brown-Schmidt, S., & Lee, W.-y. (2018). Autoregressive generalized linear mixed effect models with crossed random effects: An application to intensive binary time series eye-tracking data. Psychometrika, 83, 751–771.. https://doi.org/10.1007/s11336-018-9604-2.CrossRefGoogle Scholar
Clark, H.H., (1973). The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. Journal of Verbal Learning and Verbal Behavior, 12, 335359. https://doi.org/10.1016/s0022-5371(73)80014-3.CrossRefGoogle Scholar
Cox, M.D., The analysis of binary data 1970 London:Chapman and HallGoogle Scholar
Craigmile, P.F., Peruggia, M., & Van Zandt, T., Chow, S-M, Ferrer, E., Hsieh, F., (2010). Detrending response time series. Statistical methods for modeling human dynamics: An interdisciplinary dialogue, Boca Raton, FL:Taylor & Francis 213240Google Scholar
Curran, P.J., & Bollen, K.A., Collins, L.M., Sayer, A.G., (2001). The best of both worlds: Combining autoregressive and latent curve models. Decade of behavior. New methods for the analysis of change, Washington, DC:American Psychological Association. https://doi.org/10.1037/10409-000.Google Scholar
Curran, P.J., Lee, T., Howard, A.L., Lane, S., & MacCallum, R.Harring, J.R., Hancock, G.R., (2012). Disaggregating within-person and between-person effects in multilevel and structural equation growth models. CILVR series on latent variable methodology. Advances in longitudinal methods in the social and behavioral sciences, Charlotte, NC:IAP Information Age Publishing 217253Google Scholar
De Boeck, P. & Partchev, I.(2012). IRTrees: Tree-based item response models of the GLMM family. Journal of Statistical Software, 48, 128. https://doi.org/10.18637/jss.v048.c01.CrossRefGoogle Scholar
De Boeck, P. & Cho, S-JIRTree modeling of cognitive processes based on outcome and intermediate data 2019 College Park:Maryland Assessment Research Center (MARC)Google Scholar
Embretson, S.E., & Reise, S.P., Item response theory for psychologists 2000 Mahwah, NJ:Lawrence-ErlbaumGoogle Scholar
Fahrmeir, L.(1992). Posterior mode estimation by extended kalman filtering for multivariate dynamic generalized linear models. Journal of the American Statistical Association, 87, 501509. https://doi.org/10.2307/2290283.CrossRefGoogle Scholar
Gamerman, D.(1998). Markov chain Monte Carlo for dynamic generalised linear models. Biometrika, 85, 215227. https://doi.org/10.1093/biomet/85.1.215.CrossRefGoogle Scholar
Greven, S. & Kneib, T.(2010). On the behaviour of marginal and conditional AIC in linear mixed models. Biometrika, 97, 773789. https://doi.org/10.1093/biomet/asq042.CrossRefGoogle Scholar
Hallett, P.E., Boff, K.R., Kaufman, L.Thomas, J.P., (1986). Eye movements. Handbook of perception and human performance, New York, NY:Wiley 10.110.112Google Scholar
Hamaker, E.L., & Grasman, R.P., (2015). To center or not to center? Investigating inertia with a multilevel autoregressive model. Frontiers in Psychology, 5, 1492. https://doi.org/10.3389/fpsyg.2014.01492.CrossRefGoogle ScholarPubMed
Hanna, J.E., Tanenhaus, M.K., & Trueswell, J.C., (2003). The effects of common ground and perspective on domains of referential interpretation. Journal of Memory and Language, 49, 4361. https://doi.org/10.1016/s0749-596x(03)00022-6.CrossRefGoogle Scholar
Hsiao, C.Analysis of panel data 2003 New York:Cambridge University Press. https://doi.org/10.1017/CBO9781139839327.CrossRefGoogle Scholar
Hung, Y.Zarnitsyna, V.Zhang, Y.Zhu, C. & Wu, C.J., (2008). Binary time series modeling with application to adhesion frequency experiments. Journal of the American Statistical Association, 103, 12481259. https://doi.org/10.1198/016214508000000508.CrossRefGoogle ScholarPubMed
Jaeger, T.F., (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59, 434446. https://doi.org/10.1016/j.jml.2007.11.007.CrossRefGoogle ScholarPubMed
Jahng, S.Wood, P.K., & Trull, T.J., (2008). Analysis of affective instability in ecological momentary assessment: Indices using successive difference and group comparison via multilevel modeling. Psychological Methods, 13, 354375. https://doi.org/10.1037/a0014173.CrossRefGoogle ScholarPubMed
Jeon, M. & De Boeck, P.(2016). A generalized item response tree model for psychological assessments. Behavior Research Methods, 48, 10701085. https://doi.org/10.3758/s13428-015-0631-y.CrossRefGoogle ScholarPubMed
Jeon, M. & Rabe-Hesketh, S.(2016). An autoregressive growth model for longitudinal item analysis. Psychometrika, 81, 830850. https://doi.org/10.1007/s11336-015-9489-2.CrossRefGoogle ScholarPubMed
Klauer, K.C., (2010). Hierarchical multinomial processing tree models: A latent-trait approach. Psychometrika, 75, 7098. https://doi.org/10.1007/s11336-009-9141-0.CrossRefGoogle Scholar
Koval, P.Kuppens, P.Allen, N.B., Sheeber, L.(2012). Getting stuck in depression: The roles of rumination and emotional inertia. Cognition and Emotion, 26, 14121427. https://doi.org/10.1080/02699931.2012.667392.CrossRefGoogle ScholarPubMed
Kuppens, P.Allen, N.B., & Sheeber, L.B., (2010). Emotional inertia and psychological adjustment. Psychological Science, 21, 984991. https://doi.org/10.1177/0956797610372634.CrossRefGoogle Scholar
Lüdtke, O.Marsh, H.W., Robitzsch, A.Trautwein, U.Asparouhov, T. & Muthén, B.(2008). The multilevel latent covariate model: A new, more reliable approach to group-level effects in contextual studies. Psychological Methods, 13, 203229. https://doi.org/10.1037/a0012869.CrossRefGoogle Scholar
MacDonald, M.C., (2013). How language production shapes language form and comprehension. Frontiers in Psychology, 4, 226. https://doi.org/10.3389/fpsyg.2013.00226.CrossRefGoogle ScholarPubMed
Matzke, D.Dolan, C.V., Batchelder, W.H., & Wagenmakers, E-J.(2015). Bayesian estimation of multinomial processing tree models with heterogeneity in participants and items. Psychometrika, 80, 205235. https://doi.org/10.1007/s11336-013-9374-9.CrossRefGoogle ScholarPubMed
McMurray, B.Samelson, V.M., Lee, S.H., & Tomblin, J.B., (2010). Individual differences in online spoken word recognition: Implications for SLI. Cognitive Psychology, 60, 139. https://doi.org/10.1016/j.cogpsych.2009.06.003.CrossRefGoogle ScholarPubMed
McMurray, B.Klein-Packard, J. & Tomblin, J.B., (2019). A real-time mechanism underlying lexical deficits in developmental language disorder: Between-word inhibition. Cognition, 191, 104000. https://doi.org/10.1016/j.cognition.2019.06.012.CrossRefGoogle ScholarPubMed
Merali, N.Veeramootoo, D. & Singh, S.(2019). Eye-tracking technology in surgical training. Journal of Investigative Surgery, 32, 587593. https://doi.org/10.1080/08941939.2017.1404663.CrossRefGoogle ScholarPubMed
Molenaar, P.C., (1985). A dynamic factor model for the analysis of multivariate time series. Psychometrika, 50, 181202. https://doi.org/10.1007/bf02294246.CrossRefGoogle Scholar
Mozuraitis, M.Chambers, C.G., & Daneman, M.(2015). Privileged versus shared knowledge about object identity in real-time referential processing. Cognition, 142, 148165. https://doi.org/10.1016/j.cognition.2015.05.001.CrossRefGoogle ScholarPubMed
Nadig, A.S., & Sedivy, J.C., (2002). Evidence of perspective-taking constraints in children’s on-line reference resolution. Psychological Science, 13 4329336. https://doi.org/10.1111/1467-9280.00460.CrossRefGoogle ScholarPubMed
Nickell, S.(1981). Biases in dynamic models with fixed effects. Econometrica: Journal of the Econometric Society, 49, 14171426. https://doi.org/10.2307/1911408.CrossRefGoogle Scholar
Qu, S.,& Chai, J. Y., (2007). An exploration of eye gaze in spoken language processing for multimodal conversational interfaces. In Sidner, C. L., Schultz, T.Stone, M. & Zhai, C. (Eds.), NAACL HLT 2007-human language technologies 2007: The conference of the North American chapter of the association for computational linguistics, proceedings of the main conference (pp. 284–291). Rochester, NY: The Association for Computational Linguistics.Google Scholar
Quené, H. & van den Bergh, H.(2008). Examples of mixed-effects modeling with crossed random effects and with binomial data. Journal of Memory and Language, 59, 413425. https://doi.org/10.1016/j.jml.2008.02.002.CrossRefGoogle Scholar
R Core Team. (2017). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Retrieved April 5, 2017 from http://www.R-project.org/.Google Scholar
Richardson, D.C., & Spivey, M.J., Wnek, G.Bowlin, G.(2004). Eye tracking: Characteristics and methods. Encyclopedia of biomaterials and biomedical engineering, Boca Raton:CRC Press 10281042Google Scholar
Riefer, D.M., & Batchelder, W.H., (1988). Multinomial modeling and the measurement of cognitive processes. Psychological Review, 95, 318339. https://doi.org/10.1037//0033-295x.95.3.318.CrossRefGoogle Scholar
Rubin, D.B., (1976). Inference and missing data. Biometrika, 63, 581592. https://doi.org/10.2307/2335739.CrossRefGoogle Scholar
Rubin, R.D., Brown-Schmidt, S.Duff, M.C., Tranel, D. & Cohen, N.J., (2011). How do I remember that I know you know that I know?. Psychological Science, 22, 15741582. https://doi.org/10.1177/0956797611418245.CrossRefGoogle ScholarPubMed
Ryskin, R.A., Benjamin, A.S., Tullis, J. & Brown-Schmidt, S.(2015). Perspective-taking in comprehension, production, and memory: An individual differences approach. Journal of Experimental Psychology: General, 144, 898915. https://doi.org/10.1037/xge0000093.CrossRefGoogle ScholarPubMed
Salverda, A.P., Kleinschmidt, D. & Tanenhaus, M.K., (2014). Immediate effects of anticipatory coarticulation in spoken-word recognition. Journal of Memory and Language, 71, 145163. https://doi.org/10.1016/j.jml.2013.11.002.CrossRefGoogle ScholarPubMed
Schwarz, G.(1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461464. https://doi.org/10.1214/aos/1176344136.CrossRefGoogle Scholar
Sedivy, J.C., (2007). Implicature during real time conversation: A view from language processing research. Philosophy Compass, 2, 475496. https://doi.org/10.1111/j.1747-9991.2007.00082.x.CrossRefGoogle Scholar
StataCorp. (2017). Stata statistical software: Release 15. College Station, TX: StataCorp LLC.Google Scholar
Staudte, M. & Crocker, M.W., (2011). Investigating joint attention mechanisms through spoken human–robot interaction. Cognition, 120, 268291. https://doi.org/10.1016/j.cognition.2011.05.005.CrossRefGoogle ScholarPubMed
Tanenhaus, M.K., Spivey-Knowlton, M.J., Eberhard, K.M., & Sedivy, J.C., (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268, 16321634. https://doi.org/10.1126/science.7777863.CrossRefGoogle ScholarPubMed
Tutz, G.(1990). Sequential item response models with an ordered response. British Journal of Mathematical and Statistical Psychology, 43, 3955. https://doi.org/10.1111/j.2044-8317.1990.tb00925.x.CrossRefGoogle Scholar
Walker, G.M., Hickok, G. & Fridriksson, J.(2018). A cognitive psychometric model for assessment of picture naming abilities in aphasia. Psychological Assessment, 30, 809826.https://doi.org/10.1037/pas0000529.CrossRefGoogle ScholarPubMed
Wang, L.P., Hamaker, E. & Bergeman, C.S., (2012). Investigating inter-individual differences in short-term intra-individual variability. Psychological Methods, 17, 567581. https://doi.org/10.1037/a0029317.CrossRefGoogle ScholarPubMed
West, M.Harrison, P.J., & Migon, H.S., (1985). Dynamic generalized linear models and Bayesian forecasting. Journal of the American Statistical Association, 80, 7383. https://doi.org/10.2307/2288042.CrossRefGoogle Scholar
Supplementary material: File

Cho et al. supplementary material

Cho et al. supplementary material
Download Cho et al. supplementary material(File)
File 3.7 MB