Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-07T18:44:58.380Z Has data issue: false hasContentIssue false

Nonlinear Random-Effects Mixture Models for Repeated Measures

Published online by Cambridge University Press:  01 January 2025

Casey L. Codd*
Affiliation:
The Ohio State University
Robert Cudeck
Affiliation:
The Ohio State University
*
Requests for reprints should be sent to Casey L. Codd, Psychology Department, Ohio State University, 240D Lazenby Hall, Columbus, OH 43210, USA. E-mail: codd.2@buckeyemail.osu.edu

Abstract

A mixture model for repeated measures based on nonlinear functions with random effects is reviewed. The model can include individual schedules of measurement, data missing at random, nonlinear functions of the random effects, of covariates and of residuals. Individual group membership probabilities and individual random effects are obtained as empirical Bayes predictions. Although this is a complicated model that combines a mixture of populations, nonlinear regression, and hierarchical models, it is straightforward to estimate by maximum likelihood using SAS PROC NLMIXED. Many different models can be studied with this procedure. The model is more general than those that can be estimated with most special purpose computer programs currently available because the response function is essentially any form of nonlinear regression. Examples and sample code are included to illustrate the method.

Type
Original Paper
Copyright
Copyright © 2013 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bates, D.M., Watts, D.G. (1988). Nonlinear regression, New York: WileyGoogle Scholar
Booth, J.G., Hobert, J.P. (1998). Standard errors of prediction in generalized linear mixed models. Journal of the American Statistical Association, 93, 262272CrossRefGoogle Scholar
Browne, M.W., du Toit, S.H.C. (1991). Models for learning data. In Collins, L., Horn, J.L. (Eds.), Best methods for the analysis of change, Washington: American Psychological Association 4768Google Scholar
Cudeck, R., du Toit, S.H.C. (2002). A nonlinear form of quadratic regression with interpretable parameters. Multivariate Behavioral Research, 37, 501519CrossRefGoogle ScholarPubMed
Davidian, M. (2009). Non-linear mixed-effects models. In Fitzmaurice, G., Davidian, M., Verbeke, G., Molenberghs, G. (Eds.), Longitudinal data analysis, Boca Raton: Chapman & Hall/CRCGoogle Scholar
Davis, C.S. (2002). Statistical methods for the analysis of repeated measurements, New York: SpringerCrossRefGoogle Scholar
Demidenko, E. (2004). Mixed models theory and applications, Hoboken: WileyCrossRefGoogle Scholar
DeSarbo, W.S., Cron, W.L. (1988). A maximum likelihood methodology for clusterwise linear regression. Journal of Classification, 5, 249282CrossRefGoogle Scholar
Graybill, F.A. (1983). Matrices with applications in statistics, (2nd ed.). Pacific Grove: WadsworthGoogle Scholar
Hand, D., Crowder, M. (1996). Practical longitudinal data analysis, London: Chapman & HallCrossRefGoogle Scholar
Harring, J.R. (2005). Nonlinear mixed effects mixture model: a model for clustering nonlinear longitudinal profiles. Doctoral dissertation. University of Minnesota. Available from ProQuest Dissertations and theses database (UMI No. 3172806).Google Scholar
Harring, J.R. (2012). Finite mixtures of nonlinear mixed effects models. In Harring, J.R., Hancock, G.R. (Eds.), Advances in longitudinal methods in the social and behavioral sciences, Charlotte: Information Age Publishing 159192Google Scholar
Huet, S., Bouvier, A., Poursat, M.-A., Jolivet, E. (2004). Statistical tools for nonlinear regression, (2nd ed.). New York: SpringerGoogle Scholar
Hosmer, D.W. (1974). Maximum likelihood estimates of the parameters of a mixture of two regression lines. Communications in Statistics, 3, 9951006CrossRefGoogle Scholar
Jedidi, K., Jagpal, H.S., DeSarbo, W.S. (1997). STEMM: a general finite mixture structural equation model. Journal of Classification, 14, 2350CrossRefGoogle Scholar
Jedidi, K., Jagpal, H.S., DeSarbo, W.S. (1997). Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Marketing Science, 16(1), 3959CrossRefGoogle Scholar
Jones, B., Nagin, D.S. (2007). Advances in group-based trajectory modeling and a SAS procedure for estimating them. Sociological Methods & Research, 35, 542571CrossRefGoogle Scholar
Krommer, A.R., Ueberhuber, C.W. (1994). Numerical integration on advanced computer systems, New York: SpringerCrossRefGoogle Scholar
Komárek, A., Verbeke, G., & Molenberghs, G., (2002). A SAS-macro for linear mixed models with finite normal mixtures as random-effects distribution, Version 1.1.Google Scholar
Lenk, P.J., DeSarbo, W.S. (2000). Bayesian inference for finite mixture models of generalized mixture models with random effects. Psychometrika, 65, 93119CrossRefGoogle Scholar
Lesaffre, E., Spiessens, B. (2001). On the effect of the number of quadrature points in a logistic random-effects model: an example. Applied Statistics, 50, 325335Google Scholar
Lindstrom, M.J., Bates, D.M. (1990). Nonlinear mixed effects models for repeated measures data. Biometrics, 46, 673687CrossRefGoogle ScholarPubMed
Liu, L., Yu, Z. (2008). A likelihood reformulation method in non-normal random effects models. Statistics in Medicine, 27, 31053124CrossRefGoogle ScholarPubMed
McCulloch, C.E., Searle, S.R., Neuhaus, J.M. (2008). Generalized linear and mixed models, (2nd ed.). New York: WileyGoogle Scholar
McDonald, R.P. (2004). The informative analysis of individual trend curves. Multivariate Behavioral Research, 39, 517563CrossRefGoogle Scholar
McLachlan, G., Peel, D. (2000). Finite mixture models, New York: WileyCrossRefGoogle Scholar
Meredith, W., Tisak, J. (1990). Latent curve analysis. Psychometrika, 55(1), 107122CrossRefGoogle Scholar
Motulsky, H., Christopoulos, A. (2004). Fitting models to biological data using linear and nonlinear regression, Oxford: Oxford University PressCrossRefGoogle Scholar
Muthén, B., Muthén, L. (2008). Mplus: user’s manual, Los Angeles: Muthén & MuthénGoogle Scholar
Muthén, B., Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 55, 463469CrossRefGoogle ScholarPubMed
Nagin, D.S. (2005). Group-based modeling of development, Cambridge: Harvard University PressCrossRefGoogle Scholar
Nylund, K.L., Asparouhov, T., Muthen, B.O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: a Monte Carlo simulation study. Structural Equation Modeling, 14, 535569CrossRefGoogle Scholar
Pauler, D.K., Laird, N.M. (2000). A mixture model for longitudinal data with application to assessment of noncompliance. Biometrics, 56, 464472CrossRefGoogle ScholarPubMed
Pinheiro, J.C., Bates, D.M. (1995). Approximations to the log-likelihood function in the nonlinear mixed-effects model. Journal of Computational and Graphical Statistics, 4, 1235CrossRefGoogle Scholar
Proust, C., Jacqmin-Gadda, H. (2005). Estimation of linear mixed models with a mixture distribution for the random effects. Computer Methods and Programs in Biomedicine, 78, 165173CrossRefGoogle ScholarPubMed
Ratkowsky, D.A. (1983). Nonlinear regression modeling, New York: Marcel DekkerGoogle Scholar
Ratkowsky, D.A. (1990). Handbook of nonlinear regression models, New York: Marcel DekkerGoogle Scholar
SAS Institute (2011). SAS/STAT 9.3 user’s guide: the NLMIXED procedure, Cary: SAS Institute Online documentation retrieved from http://support.sas.com/documentation/onlinedoc/stat/930/nlmixed.pdfGoogle Scholar
Seber, G.A.F., Wild, C.J. (1989). Nonlinear regression, New York: WileyCrossRefGoogle Scholar
Skrondal, A., Rabe-Hesketh, S. (2009). Prediction in multilevel generalized linear models. Journal of the Royal Statistical Society. Series A, 172(3), 659687CrossRefGoogle Scholar
Verbeke, G., Lesaffre, E. (1996). A linear mixed-effects model with heterogeneity in the random-effects population. Journal of the American Statistical Association, 91, 217221CrossRefGoogle Scholar
Verbeke, G., Molenberghs, G. (2000). Linear mixed models for longitudinal data, New York: SpringerGoogle Scholar
Verbeke, G., Molenberghs, G. (2003). The use of score tests for inference on variance components. Biometrics, 59, 254262CrossRefGoogle ScholarPubMed
Vermunt, J.K. (2010). Longitudinal research using mixture models. In van Montfort, K., Oud, J.H.L., Satorra, A. (Eds.), Longitudinal research with latent variables, Heidelberg: Springer 119152CrossRefGoogle Scholar
Vermunt, J.K., Magidson, J. (2008). LG-syntax user’s guide: manual for latent GOLD 4.5 syntax module, Belmont: Statistical InnovationsGoogle Scholar
Vonesh, E.F., Carter, R.L. (1992). Mixed-effects nonlinear regression for unbalanced repeated measures. Biometrics, 48, 117CrossRefGoogle ScholarPubMed
Vonesh, E.F., Chinchilli, V.M. (1997). Linear and nonlinear models for the analysis of repeated measures, New York: Marcel DekkerGoogle Scholar
Weisberg, S. (2005). Applied linear regression, (3rd ed.). New York: WileyCrossRefGoogle Scholar
Woltz, D.J. (1988). An investigation of the role of working memory in procedural skill acquisition. Journal of Experimental Psychology. General, 117, 319331CrossRefGoogle Scholar
Xu, W., Hedeker, D. (2001). A random-effects mixture model for classifying treatment response in longitudinal clinical trials. Journal of Biopharmaceutical Statistics, 11, 253273CrossRefGoogle ScholarPubMed
Young, D.S., Hunter, D.R., Elmore, R.T., Xuan, F., Hettmansperger, T.P., & Thomas, H., (2007). The mixtools package: tools for mixture models. R Package Version 0.2.0.Google Scholar
Yung, Y.-F. (1997). Finite mixtures in confirmatory factor-analysis models. Psychometrika, 62(3), 297330CrossRefGoogle Scholar