Published online by Cambridge University Press: 02 January 2025
We investigate under what conditions the matrix of factor loadings from the factor analysis model with equal unique variances will give a good approximation to the matrix of factor loadings from the regular factor analysis model. We show that the two models will give similar matrices of factor loadings if Schneeweiss' condition, that the difference between the largest and the smallest value of unique variances is small relative to the sizes of the column sums of squared factor loadings, holds. Furthermore, we generalize our results and discus the conditions under which the matrix of factor loadings from the regular factor analysis model will be well approximated by the matrix of factor loadings from Jöreskog's image factor analysis model. Especially, we discuss Guttman's condition (i.e., the number of variables increases without limit) for the two models to agree, in relation with the condition we have shown, and conclude that Schneeweiss' condition is a generalization of Guttman's condition. Some implications for practice are discussed.
Kentaro Hayashi is a visiting Assistant Professor, Department of Mathematics, Bucknell University, Lewisburg PA 17837, and Peter M. Bentler is Professor, Departments of Psychology and Statistics, University of California, Los Angeles CA 90095-1563. (Emails: Khayashi@bucknell.edu, bentler@ucla.edu) Parts of this paper were discussed in a session on Factor Analysis (J. ten Berge, Chair) at the IFCS-98 International Conference, Rome, July, 1998. This work was supported by National Institute on Drug Abuse grant DA 01070. The authors thank Professors Hans Schneeweiss and Ke-Hai Yuan, and four anonymous referees, for their invaluable comments which led to an improved version of this paper.