Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-07T17:54:02.565Z Has data issue: false hasContentIssue false

Remarks on “Equivalent Linear Logistic Test Models” by Bechger, Verstralen, and Verhelst (2002)

Published online by Cambridge University Press:  01 January 2025

Gerhard H. Fischer*
Affiliation:
University of Vienna
*
Requests for reprints should be sent to Gerhard H. Fischer, Promenadegasse 21, A 1170 Wien (Vienna), AUSTRIA

Abstract

This paper discusses a new form of specifying and normalizing a Linear Logistic Test Model (LLTM) as suggested by Bechger, Verstralen, and Verhelst (Psychometrika, 2002). It is shown that there are infinitely many ways to specify the same normalization. Moreover, the relationship between some of their results and equivalent previous results in the literature is clarified, and it is shown that the goals of estimating and testing a single element of the weight matrix, for which they propose new methods, can be reached by means of simple, well-known tools already implemented in published LLTM software.

Type
Notes And Comments
Copyright
Copyright © 2004 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bechger, T.M., Verstralen, H.H.F.M., & Verhelst, N.D. (2002). Equivalent linear logistic test models. Psychometrika, 67, 123136CrossRefGoogle Scholar
Bechger, T.M., Verhelst, N.D., & Verstralen, H.H.F.M. (2001). Identifiability of nonlinear logistic test models. Psychometrika, 66, 357372CrossRefGoogle Scholar
Butter, R.P., De Boeck, P., & Verhelst, N.D. (1998). An item response model with internal restrictions on item difficulty. Psychometrika, 63, 4763CrossRefGoogle Scholar
Fischer, G.H. (1983). Logistic latent trait models with linear constraints. Psychometrika, 48, 326CrossRefGoogle Scholar
Fischer, G.H. (1995). The linear logistic test model. In Fischer, G.H. & Molenaar, I.W. (Eds.), Rasch Models: Foundations, Recent Developments, and Applications. New York: Springer-VerlagCrossRefGoogle Scholar
Fischer, G.H., & Ponocny-Seliger, E. (1998). Structural Rasch Modeling. Handbook of the Usage of LPCM-WIN 1.0. Groningen, NL: ProGAMMAGoogle Scholar
Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical Learning. New York: Springer-VerlagCrossRefGoogle Scholar
Nährer, W. (1979).Zur Analyse von Matrizenaufgaben mit dem linearen logistischen Testmodell. [On the analysis of matrices items by means of the linear logistic test model.] Zeitschrift für Experimentelle und Angewandte Psychologie, 27, 553564Google Scholar
Rasch, G. (1960). Probabilistic Models for Some Intelligence and Attainment Tests. Copenhagen: Pædagogiske Institut. (Expanded edition 1980. Chicago: The University of Chicago Press.)Google Scholar
Rost, J. (1966). Lehrbuch Testtheorie Testkonstruktion. [Textbook of test theory and test construction.] Bern: Verag Hans HuberGoogle Scholar