Hostname: page-component-5f745c7db-96s6r Total loading time: 0 Render date: 2025-01-06T21:16:38.520Z Has data issue: true hasContentIssue false

A Stochastic Multidimensional Scaling Vector Threshold Model for the Spatial Representation of “Pick Any/N” Data

Published online by Cambridge University Press:  01 January 2025

Wayne S. DeSarbo*
Affiliation:
Graduate School of Business, University of Michigan
Jaewun Cho
Affiliation:
Marketing Department, Arizona State University
*
Requests for reprints should be sent to Wayne S. DeSarbo, Marketing and Statistic Departments, Graduate School of Business, University of Michigan, Ann Arbor, MI 48109.

Abstract

This paper presents a new stochastic multidimensional scaling vector threshold model designed to analyze “pick any/n” choice data (e.g., consumers rendering buy/no buy decisions concerning a number of actual products). A maximum likelihood procedure is formulated to estimate a joint space of both individuals (represented as vectors) and stimuli (represented as points). The relevant psychometric literature concerning the spatial treatment of such binary choice data is reviewed. The nonlinear probit type model is described, as well as the conjugate gradient procedure used to estimate parameters. Results of Monte Carlo analyses investigating the performance of this methodology with synthetic choice data sets are presented. An application concerning consumer choices for eleven competitive brands of soft drinks is discussed. Finally, directions for future research are presented in terms of further applications and generalizing the model to accommodate three-way choice data.

Type
Original Paper
Copyright
Copyright © 1989 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addleman, S. (1962). Orthogonal main-effect plans for asymmetrical factorial experiments. Technometrics, 4, 2146.CrossRefGoogle Scholar
Akaike, H. (1974). A new look at statistical model identification. IEEE Transactions on Automatic Control, AC-19, 716723.CrossRefGoogle Scholar
Andersen, E. B. (1980). Discrete statistical models with social science applications, New York: North Holland.Google Scholar
Bartholomew, D. J. (1980). Factor analysis for categorical data. Journal of the Royal Statistical Society, Series B, 42, 293321.CrossRefGoogle Scholar
Bechtel, G. C., Tucker, L. R., Chang, W. (1971). A scalar product model for the multidimensional scaling of choice. Psychometrika, 36, 369388.CrossRefGoogle Scholar
Bentler, P. M., Weeks, , David, G. (1978). Restricted multidimensional scaling models. Journal of Mathematical Psychology, 17, 138151.CrossRefGoogle Scholar
Benzécri, J. P. et al. (1973). L'Analyse des Données. Vol. 1. La Taxinomie, Vol. 2. L'Analyse des Correspondances [Data analysis. Correspondance analysis], Paris: Dunod.Google Scholar
Bloxom, B. (1978). Constrained multidimensional scaling in n spaces. Psychometrika, 43, 397408.CrossRefGoogle Scholar
Bock, R. D., Lieberman, M. (1970). Fitting a response model for n dichtomously scored items. Psychometrika, 35, 179197.CrossRefGoogle Scholar
Bozdogan, H. (1987). Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52, 345370.CrossRefGoogle Scholar
Carroll, J. D. (1980). Models and methods for multidimensional analysis of preferential choice (or other dominance data). In Lantermann, E. D., Feger, H. (Eds.), Similarity and choice (pp. 234289). Vienna: Hans Huber.Google Scholar
Carroll, J. D., Pruzanksy, S., Kruskal, J. B. (1979). CANDELINC: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters. Psychometrika, 45, 324.CrossRefGoogle Scholar
Chow, G. C. (1983). Econometrics, New York: McGraw-Hill.Google Scholar
Christoffersson, A. (1975). Factor analysis of dichotomized variables. Psychometrika, 40, 532.CrossRefGoogle Scholar
Coombs, C. H. (1964). A Theory of data, New York: Wiley.Google Scholar
Cooper, L. G., Nakanishi, M. (1983). Two logit models for external analysis of preferences. Psychometrika, 48, 607620.CrossRefGoogle Scholar
Courant, R. (1965). Differential and integral calculus, Vol. I 2nd ed.,, New York: Wiley.Google Scholar
Dawes, R. M. (1964). Social selection based on multidimensional criteria. Journal of Abnormal and Social Psychology, 68, 104109.CrossRefGoogle ScholarPubMed
de Leeuw, J. (1973). Canonical analysis of categorical data, The Netherlands: Psychological Institute, University of Leiden.Google Scholar
de Leeuw, J., Heiser, W. (1980). Multidimensional scaling with restrictions on the configuration. In Krishnaiah, P. R. (Eds.), Multivariate analysis, Vol. 5 (pp. 501522). New York: North Holland.Google Scholar
Dempster, A. P., Laird, N. M., Rubin, D. B. (1977). Maximum likelihood estimation from incomplete data via the E. M. algorithm. Journal of the Royal Statistical Society, Series B, 39, 138.CrossRefGoogle Scholar
DeSarbo, W. S. (1982). GENNCLUS: New models for general nonhierarchical clustering analysis. Psychometrika, 47, 426449.CrossRefGoogle Scholar
DeSarbo, W. S., Carroll, J. D. (1985). Three-way metric unfolding via alternating weighted least squares. Psychometrika, 50, 275300.CrossRefGoogle Scholar
DeSarbo, W. S., Carroll, J. D., Lehmann, D. R., O'Shaughnessy, J. (1982). Three-way multivariate conjoint analysis. Marketing Science, 1, 323350.CrossRefGoogle Scholar
DeSarbo, W. S., Hoffman, D. L. (1986). A new unfolding threshold model for the spatial representation of binary choice data. Applied Psychological Measurement, 10, 247264.CrossRefGoogle Scholar
DeSarbo, W. S., Hoffman, D. L. (1987). Constructing MDS joint spaces from binary choice data: A new multidimensional unfolding threshold model for marketing research. Journal of Marketing Research, 24, 4054.CrossRefGoogle Scholar
DeSarbo, W. S., Keramidas, E. M. (1983). A spatial choice model. Proceedings of the Business and Economic Statistics Section of the American Statistical Association (pp. 4146). Washington, DC: American Statistical Association.Google Scholar
DeSarbo, W. S., Oliver, R. L., DeSoete, G. (1986). A new probabilistic MDS vector model. Applied Psychological Measurement, 10, 7998.CrossRefGoogle Scholar
DeSarbo, W. S., Rao, V. R. (1984). GENFOLD2: A set of models and algorithms for the GENeral un-FOLDing analysis of preference/dominance data. Journal of Classification, 1, 147186.CrossRefGoogle Scholar
DeSarbo, W. S., Rao, V. R. (1986). A constrained unfolding model for product positioning analysis. Marketing Science, 5, 119.CrossRefGoogle Scholar
DeSoete, G., Carroll, J. D. (1983). A maximum likelihood method for fitting the wandering vector model. Psychometrika, 48, 553566.CrossRefGoogle Scholar
Einhorn, H. J. (1970). The use of nonlinear, noncompensatory models in decision making. Psychology Bulletin, 73, 221230.CrossRefGoogle ScholarPubMed
Fletcher, R., Reeves, C. M. (1964). Function minimization by conjugate gradients. Computer Journal, 7, 149154.CrossRefGoogle Scholar
Gifi, A. (1981). Nonlinear multivariate analysis, Leiden, The Netherlands: University of Leiden, Department of Data Theory.Google Scholar
Gifi, A. (1981). Homogeneity analysis, Leiden, The Netherlands: University of Leiden, Department of Data Theory.Google Scholar
Green, P. E., Wind, Y. (1973). Multiattribute decisions in marketing: A measurement approach, Hinedale, IL: Dryden Press.Google Scholar
Greenacre, M. J. (1984). Theory and application of correspondence analysis, London: Academic Press.Google Scholar
Hausman, J. A., Wise, D. A. (1978). A conditional probit model for qualitative choice: Discrete decisions recognizing interdependencies and heterogeneous preferences. Econometrika, 46, 403426.CrossRefGoogle Scholar
Heiser, W. J. (1981). Unfolding analysis of proximity data, Leiden, The Netherlands: University of Leiden.Google Scholar
Himmelblau, D. M. (1972). Applied nonlinear programming, New York: McGraw Hill.Google Scholar
Hoffman, D. L., Franke, G. (1986). Correspondence analysis: A multidimensional analysis of categorical data in marketing research. Journal of Marketing Research, 23, 213227.CrossRefGoogle Scholar
Kruskal, J. B. (1981). Multilinear models for data analysis. Behaviormetrika, 10, 120.CrossRefGoogle Scholar
Kruskal, J. B., Shepard, R. N. (1974). A nonmetric variety of linear factor analyses. Psychometrika, 39, 123157.CrossRefGoogle Scholar
Jedidi, K. (1988). A stochastic three-way MDS choice methodology, Philadelphia, PA: University of Pennsylvania.Google Scholar
Lancaster, K. (1966). A new approach to consumer theory. Journal of Political Economy, 74, 132157.CrossRefGoogle Scholar
Lancaster, K. (1979). Variety, equity, and efficiency, New York: Columbia University Press.CrossRefGoogle Scholar
Lebart, L., Morineau, A., Warwick, K. M. (1984). Multivariate descriptive statistical analysis, New York: John Wiley.Google Scholar
Lehmann, D. R. (1985). Market research and analysis 2nd ed.,, Homewood, IL: R. D. Irwin.Google Scholar
Levine, J. H. (1979). Joint-space analysis of ‘pick any’ data: Analysis of choices from an unconstrained set of alternatives. Psychometrika, 44, 8592.CrossRefGoogle Scholar
Lewin, K., Tamara, D., Festinger, L., Sears, P. (1944). Level of aspiration. In Hunt, J. M. (Eds.), Personality and the behavior disorders (pp. 333378). New York: Ronald Press.Google Scholar
Maddala, G. S. (1986). Limited dependent and qualitative variables in econometrics, New York: Cambridge University Press.Google Scholar
McCullagh, P., Nelder, J. A. (1983). Generalized linear models, New York: Chapman and Hall.CrossRefGoogle Scholar
McFadden, D. (1976). Quantal choice analysis: A survey. Annals of Economic and Social Measurement, 5, 363390.Google Scholar
Muthén, B. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika, 43, 551560.CrossRefGoogle Scholar
Muthén, B. (1981). Factor analysis of dichotomous variables: American attitudes toward abortion. In Jackson, , Borgatta, (Eds.), Factor analysis and measurement in sociological research (pp. 114136). Beverly Hills, CA: Sage Press.Google Scholar
Nelder, John A., Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society, Series A, 135, 370384.CrossRefGoogle Scholar
Nishisato, S. (1980). Analysis of categorical data: Dual scaling and its applications, Toronto: University of Toronto Press.CrossRefGoogle Scholar
Noma, E., Johnson, J. (1977). Constraining nonmetric multidimensional scaling configurations, Ann Arbor: The University of Michigan, Human Performance Center.Google Scholar
Powell, M. J. D. (1977). Restart procedures for the conjugate gradient method. Mathematical Programming, 12, 241254.CrossRefGoogle Scholar
Siegel, S. (1957). Level of aspiration and decision making. Psychological Review, 64, 253262.CrossRefGoogle ScholarPubMed
Simon, H. A. (1959). Theories of decision-making in economics and behavioral science. American Economic Review, 49, 253283.Google Scholar
Simon, H. A. (1978). Rationality as process as product of thought. American Economic Association, 68, 116.Google Scholar
Slater, P. (1960). The analysis of personal preferences. British Journal of Statistical Psychology, 13, 119135.CrossRefGoogle Scholar
Takane, Y. (1983). Choice model analysis of the “pick any/n” type of binary data. Handout for Presentation at the European Meetings of the Psychometric and Classification Societies, Jouy-en-Josas, France.Google Scholar
Tenenhaus, M., Young, F. (1985). An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis, and other methods for quantifying categorical, multivariate data. Psychometrika, 50, 91119.CrossRefGoogle Scholar
Torgerson, W. S. (1958). Theory and methods of scaling, New York: Wiley.Google Scholar
Tucker, L. R. (1960). Intra-individual and inter-individual multidimensionality. In Gulliksen, H., Messick, S. (Eds.), Psychological scaling: Theory and applications (pp. 155167). New York: Wiley.Google Scholar