Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T21:07:19.118Z Has data issue: false hasContentIssue false

Tucker3 Hierarchical Classes Analysis

Published online by Cambridge University Press:  01 January 2025

Eva Ceulemans*
Affiliation:
Katholieke Universiteity Leuven
Iven Van Mechelen
Affiliation:
Katholieke Universiteity Leuven
Iwin Leenen
Affiliation:
Katholieke Universiteity Leuven
*
Requests for reprints should be sent to Eva Ceulemans, Department of Psychology, Tiensestraat 102, B-3000 Leuven, Belgium. Email: Eva.Ceulemans@psy.kuleuven.ac.be

Abstract

This paper presents a new model for binary three-way three-mode data, called Tucker3 hierarchical classes model (Tucker3-HICLAS). This new model generalizes Leenen, Van Mechelen, De Boeck, and Rosenberg's (1999) individual differences hierarchical classes model (INDCLAS). Like the INDCLAS model, the Tucker3-HICLAS model includes a hierarchical classification of the elements of each mode, and a linking structure among the three hierarchies. Unlike INDCLAS, Tucker3-HICLAS (a) does not restrict the hierarchical classifications of the three modes to have the same rank, and (b) allows for more complex linking structures among the three hierarchies. An algorithm to fit the Tucker3-HICLAS model is described and evaluated in an extensive simulation study. An application of the model to hostility data is discussed.

Type
Article
Copyright
Copyright © 2003 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The first author is a Research Assistant of the Fund for Scientific Research–Flanders (Belgium). The research reported in this paper was partially supported by the Research Council of K.U. Leuven (GOA/2000/02). We are grateful to Kristof Vansteelandt for providing us with an interesting data set.

References

Barbut, M., Monjardet, B. (1970). Ordre et classification: Algèbre et combinatoire [Order and classification: Algebra and combinatorics], Paris: Hachette.Google Scholar
Birkhoff, G. (1940). Lattice theory. Providence, RI: American Mathematical Society.Google Scholar
Carroll, J.D., Chang, J.J. (1970). Analysis of individual differences in multidimensional scaling via ann-way generalization of “Eckart-Young” decomposition. Psychometrika, 35, 283319.CrossRefGoogle Scholar
Cattell, R.B. (1966). The meaning and strategic use of factor analysis. In Cattell, R.B. (Eds.), Handbook of multivariate experimental psychology (pp. 174243). Chicago, IL: Rand McNally.Google Scholar
Ceulemans, E., & Van Mechelen, I. (in press). Tuckery hierarchical classes analysis. Psychometrika.Google Scholar
Chaturvedi, A., Carroll, J.D. (1994). An alternating combinatorial optimization approach to fitting the INDCLUS and generalized INDCLUS models. Journal of Classification, 11, 155170.CrossRefGoogle Scholar
De Boeck, P., Rosenberg, S. (1988). Hierarchical classes: Model and data analysis. Psychometrika, 53, 361381.CrossRefGoogle Scholar
Gati, I., Tversky, A. (1982). Representations of qualitative and quantitative dimensions. Journal of Experimental Psychology, 8, 325340.Google ScholarPubMed
Haggard, E.A. (1958). Intraclass correlation and the analysis of variance. New York, NY: Dryden.Google Scholar
Harshman, R.A. (1970). Foundations of the PARAFAC procedure: Models and conditions for an explanatory multi-modal factor analysis. UCLA Working Papers in Phonetics, 16, 184.Google Scholar
Hubert, L., Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193218.CrossRefGoogle Scholar
Kiers, H.A.L. (2000). Towards a standardized notation and terminology in multiway analysis. Journal of Chemometrics, 14, 105122.3.0.CO;2-I>CrossRefGoogle Scholar
Kirk, R.E. (1982). Experimental design: Procedures for the behavioral sciences 2nd ed., Belmont, CA: Brooks/Cole.Google Scholar
Kroonenberg, P.M. (1983). Three-mode principal component analysis: Theory and applications. Leiden: DSWO.Google Scholar
Kroonenberg, P.M., de Leeuw, J. (1980). Principal component analysis of three-mode data by means of alternating least squares algorithms. Psychometrika, 45, 6997.CrossRefGoogle Scholar
Leenen, I., Van Mechelen, I. (1998). A branch-and-bound algorithm for Boolean regression. In Balderjahn, I., Mathar, R., Schader, M. (Eds.), Data highways and information flooding, a challenge for classification and data analysis (pp. 164171). Berlin, Germany: Springer-Verlag.CrossRefGoogle Scholar
Leenen, I., Van Mechelen, I., De Boeck, P. (2001). Models for ordinal hierarchical classes analysis. Psychometrika, 66, 389404.CrossRefGoogle Scholar
Leenen, I., Van Mechelen, I., De Boeck, P., Rosenberg, S. (1999). INDCLAS: A three-way hierarchical classes model. Psychometrika, 64, 924.CrossRefGoogle Scholar
Timmerman, M.E., Kiers, H.A.L. (2000). Three-mode principal components analysis: Choosing the numbers of components and sensitivity to local optima. British Journal of Mathematical and Statistical Psychology, 53, 116.CrossRefGoogle ScholarPubMed
Tucker, L.R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31, 279311.CrossRefGoogle ScholarPubMed
Van Mechelen, I., De Boeck, P., Rosenberg, S. (1995). The conjunctive model of hierarchical classes. Psychometrika, 60, 505521.CrossRefGoogle Scholar
Vansteelandt, K., Van Mechelen, I. (1998). Individual differences in situation-behavior profiles: A triple typology model. Journal of Personality and Social Psychology, 75, 751765.CrossRefGoogle Scholar
Wansbeek, T., Verhees, J. (1989). Models for multidimensional matrices in econometrics and psychometrics. In Coppi, R., Bolasco, S. (Eds.), Multiway data analysis (pp. 543552). Amsterdam, the Netherlands: Elsevier.Google Scholar
Wright, J.C., Mischel, W. (1987). A conditional approach to dispositional constructs: The local predictability of social behavior. Journal of Personality and Social Psychology, 55, 454469.CrossRefGoogle Scholar