Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T02:25:36.114Z Has data issue: false hasContentIssue false

Deriving the Metallicity Distribution Function of Galactic Systems

Published online by Cambridge University Press:  05 March 2013

Yeshe Fenner
Affiliation:
Centre for Astrophysics & Supercomputing, Swinburne University, Mail #31, Victoria 3122, Australia; yfenner@astro.swin.edu.au
Brad K. Gibson
Affiliation:
Centre for Astrophysics & Supercomputing, Swinburne University, Mail #31, Victoria 3122, Australia; bgibson@astro.swin.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The chemical evolution of the Milky Way is investigated using a dual-phase metal-enriched infall model in which primordial gas fuels the earliest epoch of star formation, followed by the ongoing formation of stars from newly accreted gas. The latest metallicity distribution of local K-dwarfs is reproduced by this model, which allows the Galactic thin disk to form from slightly metal-enriched gas with α-element enhancement. Our model predicts ages for the stellar halo and thin disk of 12.5 and 7.4 Gyr respectively, in agreement with empirically determined values. The model presented in this paper is compared with a similar dual-phase infall model from Chiappini et al. (2001). We discuss a degeneracy that enables both models to recover the K-dwarf metallicity distribution while yielding different star formation histories.

The metallicity distribution function (MDF) of K-dwarfs is proposed to be more directly comparable to chemical evolution model results than the G-dwarf distribution because lower mass K-dwarfs are less susceptible to stellar evolutionary effects. The K-dwarf MDF should consequently be a better probe of star formation history and provide a stronger constraint to chemical evolution models than the widely used G-dwarf MDF. The corrections that should be applied to a G-dwarf MDF are quantified for the case of the outer halo of NGC 5128.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2003

References

Argast, D., Samland, M., Thielemann, F.-K. & Gerhard, O. E. 2002, A&A, 388, 842 Google Scholar
Bazan, G. & Mathews, G. J. 1990, ApJ, 354, 644 Google Scholar
Carretta, E., Gratton, R. G. & Sneden, C. 2000, A&A, 356, 238 Google Scholar
Chaboyer, B., Sarajedini, A. & Armandroff, T.E. 2000, AJ, 120, 3102 Google Scholar
Chiappini, C., Matteucci, F. & Gratton, R. 1997, ApJ, 477, 765 Google Scholar
Chiappini, C., Matteucci, F. & Romano, D. 2001, ApJ, 554, 1044 Google Scholar
Durrell, P. R., Harris, W. E. & Pritchet, C. J. 2001, AJ, 121, 2557 CrossRefGoogle Scholar
ESA, 1997, The Hipparcos and Tycho Catalogues, ESA, SP-1200Google Scholar
Fenner, Y. & Gibson, B. K., in preparationGoogle Scholar
Fenner, Y., Gibson, B. K. & Limongi, M. 2002, Ap&SS, 281, 537 Google Scholar
Gibson, B. K., Giroux, M. L., Penton, S. V., Stocke, J. T., Shull, J. M. & Tumlinson, J. 2001, AJ, 547, 3280 Google Scholar
Gilmore, G., Wyse, R. F. G. & Jones, J. B. 1995, AJ, 109, 1095 Google Scholar
Goswami, A. & Prantzos, N. 2000, A&A, 359, 191 Google Scholar
Hansen, B. M. S., Brewer, J., Fahlman, G. G., Gibson, B. K., Ibata, R., Limongi, M., Rich, R. M., Richer, H. B., Shara, M. M. & Stetson, P. B. 2002, ApJ, 574, L155 Google Scholar
Ibukiyama, A. & Arimoto, N. 2002, A&A, 394, 927 Google Scholar
Harris, G. L. H. & Harris, W. E. 2000, AJ, 120, 2423 Google Scholar
Harris, W. E. & Harris, G. L. H. 2002, AJ, 123, 3108 Google Scholar
Haywood, M. 2001, MNRAS, 325, 1365 Google Scholar
Hou, J. L., Chang, R. & Fu, C. 1998, in Pacific Rim Conference on Stellar Astrophysics, in K. L. Chan, K. L. Cheng, K. S. & Singh, H. P., eds., (San Francisco: ASP), p. 143 Google Scholar
Kotoneva, E., Flynn, C., Chiappini, C. & Matteucci, F. 2002, MNRAS, 336, 879 CrossRefGoogle Scholar
Kroupa, P., Tout, C. A. & Gilmore, G. 1993, MNRAS, 262, 545 Google Scholar
Limongi, M., Straniero, O. & Chieffi, A., 2000, ApJS, 129, 625 CrossRefGoogle Scholar
Limongi, M. & Chieffi, A., 2002 PASA, 19, 246 CrossRefGoogle Scholar
Melendez, J., Barbuy, B. & Spite, F. 2001, ApJ, 556, 858 CrossRefGoogle Scholar
McWilliam, A. 1997, ARAA, 35, 503 CrossRefGoogle Scholar
Norris, J. E. & Ryan, S. G., 1991, ApJ, 380, 403 CrossRefGoogle Scholar
Prantzos, N. & Silk, J. 1998, ApJ, 507, 229 Google Scholar
Renzini, A. & Voli, M. 1981, A&A, 94, 175 Google Scholar
Rocha-Pinto, H.-J. & Maciel, W. J. 1996, MNRAS, 279, 447 Google Scholar
Rocha-Pinto, H.-J. & Maciel, W. J. 1997, A&A, 325, 523 Google Scholar
Romano, D., Matteucci, F., Salucci, P. & Chiappini, C. 2000, ApJ, 539, 235 Google Scholar
Ryan, S. G. Norris, J. E. & Beers, T. C. 1996, ApJ, 471, 254 Google Scholar
Salpeter, E. E. 1955, ApJ, 121, 161 Google Scholar
Scalo, J. M. 1986, Fund. Cosm. Phys., 11, 1 Google Scholar
Schaller, G., Schaerer, D., Meynet, G. & Maeder, A. 1992, A&AS, 96, 269 Google Scholar
Sembach, K. R., Gibson, B. K., Fenner, Y. & Putman, M. E. 2002, ApJ, 572, 178 Google Scholar
Thielemann, F.-K., Nomoto, K., Hashimoto, M., 1993, in Prantzos, N., Vangiono-Flam, E. & Casse, M., eds., Origin and Evolution of the Elements, Cambridge Univ. Press, Cambridge, p. 297 Google Scholar
Tinsley, B. M. 1980, Fund. Cosm. Phys., 5, 287 Google Scholar
Wakker, B. P., Howk, J. C., Savage, B. D., van Woerden, H., Tufte, S. L., Schwarz, U. J., Benjamin, R., Reynolds, R. J., Peletier, R. F. & Kalberla, P. M. W. 1999, Nature, 402, 388 Google Scholar
Woosley, S. E. & Weaver, T. A. 1995, ApJS, 101, 181 Google Scholar
Wyse, R. F. G. 2001, in J. G. Funes & E. M. Corsini, eds., ASP Conf. Ser. 230, Galaxy Disks and Disk Galaxies, (San Francisco: ASP), 71 Google Scholar
Wyse, R. F. G. & Gilmore, G. 1995, AJ, 110, 2771 Google Scholar