Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T18:12:31.035Z Has data issue: false hasContentIssue false

The Evolution of Shocks in Blazar Jets

Published online by Cambridge University Press:  05 March 2013

Geoffrey V. Bicknell
Affiliation:
Research School of Astronomy and Astrophysics, Mt Stromlo Observatory, Cotter Road, Weston, ACT 2611; Geoff.Bicknell@anu.edu.au Department of Physics and Theoretical Physics, ANU, Canberra, ACT 0200
Stefan J. Wagner
Affiliation:
Landessternwarte, Koenigstuhl, D-69117 Heidelberg, Germany; S.Wagner@lsw.uni-heidelberg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider the shock structures that can arise in blazar jets as a consequence of variations in the jet flow velocity. There are two possible cases: (1) a double shock system consisting of both a forward and reverse shock, and (2) a single shock (either forward or reverse) together with a rarefaction wave. These possibilities depend upon the relative velocity of the two different sections of jet. Using previously calculated spherical models for estimates of the magnetic field and electron number density of the emission region in the TeV blazar Mkn 501, we show that this region is in the form of a thin disk in the plasma rest frame. It is possible to reconcile spectral and pair opacity constraints for Mkn 501 for Doppler factors in the range of 10–20. This is easiest if the corrections for TeV absorption by the infrared background are not as large as implied by recent models.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2002

References

Agudo, A., Gómez, J.-L., Martì, J.-M., Ibánez, J.-M., Marscher, A. P., Alberdi, A., Aloy, M.-A., & Hardee, P. E. 2001, ApJ, 549, L183 Google Scholar
Bicknell, G. V. 1994, ApJ, 422, 542 Google Scholar
Bicknell, G. V. 1995, ApJS, 101, 29 Google Scholar
Bicknell, G. V., Wagner, S. J., & Groves, B. A. 2001, in The Oxford Radio Galaxy Workshop, ASP Conference Series 250, eds R. A. Laing, & K. Blundell (San Francisco: ASP), 80 Google Scholar
Blandford, R. D. 1994, in The First Stromlo Symposium: The Physics of Active Galaxies, ASP Conference Series 54, eds G. Bicknell, M. Dopita, & P. Quinn (Provo, Utah: ASP), 23 Google Scholar
Blandford, R. D., & Levinson, A. 1995, ApJ, 441, 79 Google Scholar
Ghisellini, G. 1997, in Relativistic Jets in AGNs, eds M. Ostrowski, M. Sikora, G. Madejski, & M. C. Begelman (Krakow: Poligra?a Inspektoratu Towarzystwa Salezjanskiego), 262 Google Scholar
Guy, J., Renault, C., Aharonian, F. A., Rivoal, M., & Tavernet, J. 2000, A&A, 359, 419 Google Scholar
Komissarov, S. S., & Falle, S. A. E. G. 1997, MNRAS, 288, 833 CrossRefGoogle Scholar
Lamer, G., & Wagner, S. J. 1998, A&A, 331, L13 Google Scholar
Landau, L. D., & Lifshitz, E. M. 1987, Fluid Mechanics, 2nd English Edition (Oxford: Pergamon)Google Scholar
Liang, E. P. T. 1977, ApJ, 211, 361 CrossRefGoogle Scholar
Mastichiadis, A., Georganopoulos, M., & Kirk, J. G. 2001, in High Energy Gamma-Ray Astronomy, eds F. Aharonian, & H. Voelk (New York: American Institute of Physics), 688 Google Scholar
Rees, M. J. 1978, MNRAS, 184, 61P Google Scholar
Rosen, A., Hughes, P. A., & Duncan, G. C. 1999, ApJ, 516, 729 Google Scholar
Svensson, R. 1987, MNRAS, 227, 403Google Scholar