Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T05:01:44.079Z Has data issue: false hasContentIssue false

Hi Absorption in GPS/CSS Sources

Published online by Cambridge University Press:  05 March 2013

Ylva Pihlström
Affiliation:
NRAO, PO Box O, Socorro, NM 87801, USA. ypihlstr@nrao.edu
John Conway
Affiliation:
Onsala Space Observatory, S-439 92 Onsala, Sweden. jconway@oso.chalmers.se
Rene Vermeulen
Affiliation:
NRAO, PO Box O, Socorro, NM 87801, USA. ypihlstr@nrao.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Combining our own observations with data from the literature, we consider the incidence of HI absorption in gigahertz peaked spectrum (GPS) and compact steep spectrum (CSS) sources. Here we present our preliminary results, where we find that the smaller GPS sources (<1 kpc) on average have larger HI column densities than the larger CSS sources (>1 kpc). Both a spherical and an axi-symmetric gas distribution, with a radial power law density profile, can be used to explain this anti-correlation between projected linear size and HI column density. Since most detections occur in galaxy classified objects, we argue that if the unified schemes apply to the GPS/CSS sources, a disk distribution for the HI is more likely.

Type
GPS/CSS Workshop
Copyright
Copyright © Astronomical Society of Australia 2003

References

Conway, J. E. 1996, in The Second Workshop on Gigahertz Peaked Spectrum and Compact Steep Spectrum Radio Sources, eds I. Snellen, R. T. Schilizzi, H. A. J. Röttgering, & M. N. Bremer (Leiden: Publ JIVE), 198 Google Scholar
de Vries, W. H., O'Dea, C. P., Barthel, P. D., Fanti, C., Fanti, R., & Lehnert, M. D. 2000, AJ, 120, 2300 CrossRefGoogle Scholar
Gelderman, R., & Whittle, M. 1994, ApJS, 91, 491 CrossRefGoogle Scholar
Kameno, S., Horiuchi, S., Shen, Z.-Q., Inoue, M., Kobayashi, H., Hirabayashi, H., & Murata, Y. 2000, PASJ, 52, 209 CrossRefGoogle Scholar
Kellermann, K. I., Vermeulen, R. C., Cohen, M. H., & Zensus, J. A. 1999, BAAS, 31, 856 Google Scholar
Lavalley, M., Isobe, T., & Feigelson, E. 1992, BAAS, 24, 839 Google Scholar
Marr, J. M., Taylor, G. B., & Crawford, F. III 2001, ApJ, 550, 160 CrossRefGoogle Scholar
O'Dea, C. P., Stanghellini, C., Baum, S., & Charlot, S. 1996, ApJ, 470, 806 CrossRefGoogle Scholar
Peck, A. B., & Taylor, G. B. 1998, ApJ, 502, L23 CrossRefGoogle Scholar
Peck, A. B., Taylor, G. B., & Conway, J. E. 1999, ApJ, 521, 103 CrossRefGoogle Scholar
Perlman, E. S., Stocke, J. T., Conway, J. E., & Reynolds, C. 2001, AJ, 122, 536 CrossRefGoogle Scholar
Pihlström, Y. M. 2001, PhD Thesis, Chalmers University of Technology, Göteborg Google Scholar
Saikia, D. J., Jeyakumar, S., Wiita, P. J., Sanghera, H. S., & Spencer, R. E. 1995, A&A 295, 629 Google Scholar
Stanghellini, C., O'Dea, C. P., Dallacasa, D., Baum, S. A., Fanti, R., & Fanti, C. 1998, A&AS, 131, 303 Google Scholar
Vermeulen, R. C., Ros, E., Kellermann, K. I., Cohen, M. H., Zensus, J. A., & van Langevelde, H. J. 2003a, A&A, in pressGoogle Scholar
Vermeulen, R. C., Ros, E., Kellermann, K. I., Cohen, M. H., Zensus, J. A., & van Langevelde, H. J. 2003b, PASA, 20, 65 CrossRefGoogle Scholar